The binding state of indium and tin in natural sulphides: first results of a comparative study by X-ray absorption spectroscopy at the L-edge

Figueiredo, M.O.1,2 & Silva, T.P.2,1
1CENIMAT/ISN, Dept of Material. Science, Faculty of Sciences and Technology, New University of Lisbon, Caparica, Portugal (ondina.figueiredo@iscte.pt)
2Laboratório Nacional de Energia e Geologia I.P. (LNEG), U. Mineral Resources and Geophysics, Alfragide, Portugal

One electron makes the difference between the outer shell of In and Sn, two scarce metals with very distinct crystal chemical behaviour in the Earth’s crust: indium is clearly chalcophile, very seldom forming specific minerals and occurring mainly dispersed within excess-metal polymetallic sulphides, while tin is markedly lithophile and currently present as stannic oxide.

Indium is nowadays widely used in many technologic fields (low melting-temperature alloys, solders and various ‘high-tech’ devices like liquid crystal displays (LCD), organic light emitting diodes (OLED), transparent flexible thin-films of ionic amorphous oxide semiconductors (IAOS), photovoltaic cells with increased efficiency based on Cu(In,Ga)Se2 (CIGS). As a consequence, indium consumption is expected to increase in the near future, centring a special interest on the improvement of its recycling technology.

Indium recovery stands mostly on zinc extraction from the natural cubic sulphide – sphalerite, the prototype of so-called «tetrahedral structures» where metal ions fill half of the available tetrahedral sites within the cubic closest packing of sulphur anions. Such anionic array is thus particularly suitable to accommodate poly-cations in close edge-sharing tetrahedral sites [1,2], as occurs in excess-metal copper sulphides (e.g., bornite, ideally Cu5FeS4), recognized to be relevant in its structure (like sodalite group minerals). Several minerals from different localities like

- lazurite ((Na, Ca)2[(SO4,Cl)2Al6Si2O22]),
- hackmanite (Na4[Al3Si3O9]((Cl,SO4)3)x[0.5H2O]),
- nesosilicate ((Na2[SO4]Al6Si2O22)),
- hauyne ((Na,Ca)4[Al6Si2O22]((SO4,Cl)2)1-2)

have been investigated by x-ray absorption spectroscopy at the sulfur K-edge in order to get information on sulfur valence and molecular structure.

The measurements have been performed at the X-ray Beamline for Environmental Studies (SUL-X) of the synchrotron radiation source ANKA in Karlsruhe in normal focus and partly in microfocus to separate signals from minerals when they are inter-grown with other sulfur containing phases. The X-ray absorption near edge structure (XANES) spectra are classified with respect to pre-edge features and edge structures. Hackmanites for example show a sharp pre-edge at the lowest energy so far recognized in S K-edge x-ray absorption spectra [1]. Lazurites are characterized by a sulfate resonance and spectral features that indicate reduced sulfur species. Ultramarine color pigments show two types of spectra, both indicate reduced sulfur species, too.

Besides the above mentioned minerals and color pigments helvite (MnBe3[(SiO4)3]), vishnevite ((Na,K)2[(SO4,CO3)2Al6Si2O22]x2H2O) and other nontectosilicates like ellestadite (Ca2(Si4O9)2PO4Cl(F,OH,Cl)) have been included in the study.

The results will be compared with non-silicate compounds and minerals where sulfur is the main constituent, like elemental sulfur, iron sulfides and different sulfites and sulfates. A first attempt to gain structural information on sulfur in silicate minerals using S K-edge Extended Fine structure (EXAFS) spectroscopy will also be discussed.

Acknowledgements: Work developed through the project PTDC/CTE-GIN/67027/2006 financed by the Portuguese Foundation for Science & Technology (MCTES). Financial support of EU to perform the experiments at the ESRF.