VARIABLE-TEMPERATURE 1H-NMR STUDIES ON THE CONFORMATIONS OF N'-PALMITOYL-RIFABUTIN IN SOLUTION

Figueiredo R.a,c, Maria L.b, Duarte L.c, Rodrigues A.I.d, Costa M.C.d and Menezes J.C.a

aDepartment of Research & Development, CIPAN S.A., Portugal; bCentro de Química Estrutural (CQE), IST-UTL, Portugal; cLaboratory for Molecular Cryo-scopics and Bio-spectroscopy (LMCB), Universidade de Coimbra, Portugal; dINEIT, Instituto Nacional de Engenharia, Tecnologia e Inovação I.P., Portugal; eIBB, Centre for Biological and Chemical Engineering, IST-UTL, Portugal

In addition to structural demands, it is well known that geometry of the entire molecule is important for the expression of biological activity. Accordingly, elucidation of conformational properties of compounds could be interesting.

We noticed the broadening of some peaks in the 1H-NMR spectra of a series of recently developed Rifabutin (RFB) derivatives.1 This fact let us to suspect the existence of a dynamic conformational equilibrium of these in solution.

Although a standard protocol for NMR structure determination provides a static picture of the molecule, additional NMR experiments can provide information on the frequencies of the rate processes that mediate transitions between discrete states of the molecule within the conformation space spanned by the static bundle of NMR-conformers.2,3,4,5

Having chosen the derivative with the longer side chain of that series – N'-palmitoyl-RFB – the most prone of the series of producing the highest steric constrain to RFB's backbone, a 1H-NMR study over a range of temperatures was undertaken. The results of this study are herein presented.

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{figure1.png}
\caption{High-field region of 1H-NMR at different temperatures (CH$_3$-34 peak variation)}
\end{figure}

4. Tzou Der-Lil \textit{et al.}, Biopolymers, 2005, 70: 139-149.

Acknowledgements

We would like to thank to Fundação para a Ciência e Tecnologia for Figueiredo grant (SFRH/BDE/15554/2005). Also thanks are due to the IST-UTL NMR Center and especially to Prof. Dr. José Ascenso (NMR studies) and to LMCB (Conformational studies) in the person of Prof. Dr. Rui Fausto.