Thermal modification on *Eucalyptus* wood: an essay

Sofia Knapic, José Santos, Helena Pereira

Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade Técnica de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
[sknapic@isa.utl.pt; hpereira@isa.utl.pt]

LNEG, Estrada Paço Lumiar, 22, 1149-038 Lisboa, Portugal
[jose.santos@lneg.pt]

18th September 2012
Congress center - Cankarjev dom
Ljubljana, Slovenia
Portugal

- 3.46 millions ha of forest → 38.8% of national territory
- 739 515 ha of Eucalypt plantations → 23% of forested area

✔ Eucalypts are important species in Portugal’s forestry (the 2nd forest species in forest area), due to their economic relevance for pulp&paper production (6.15 million m3 annual consumption).

✔ In Portugal, eucalypt timber is not commonly used for its solid wood value (whether for carpentry or furniture) and research is consequently focused on pulp production.
Objective

Evaluation of wood strength properties of *Eucalyptus globulus* and *Eucalyptus botryoides* subjected to heat treatments with low energy input.

Application of an innovative heat treatment (under patent submission) was carried out using non-oxidative conditions and a new heat transfer medium.
Samples were introduced in a metallic box with an "inert" material (maximum 2% oxygen). The box was closed with an appropriate cover and put in a laboratorial oven with internal ventilation.

Physical properties

<table>
<thead>
<tr>
<th>Eucalyptus</th>
<th>Density [kg/m³]</th>
<th>Tangential shrinkage [%]</th>
<th>Radial shrinkage [%]</th>
<th>Weight loss [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural</td>
<td>756</td>
<td>16.7</td>
<td>7.5</td>
<td>---</td>
</tr>
<tr>
<td>Modified 180 °C</td>
<td>730</td>
<td>10.0</td>
<td>8.6</td>
<td>3</td>
</tr>
<tr>
<td>Modified 210 °C</td>
<td>718</td>
<td>12.4</td>
<td>6.2</td>
<td>5</td>
</tr>
</tbody>
</table>

Weight loss of modified wood in comparison to natural wood was not negligible.

Increase on dimensional stability, both in tangential and radial directions compared to natural wood.
Thermal modification on *Eucalyptus* wood: an essay

<table>
<thead>
<tr>
<th>Eucalyptus</th>
<th>Bending modulus of elasticity [MPa]</th>
<th>Bending rupture [MPa]</th>
<th>Bending deflection at rupture [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural</td>
<td>13259</td>
<td>167.6</td>
<td>9.0</td>
</tr>
<tr>
<td>Modified 180 °C</td>
<td>11361</td>
<td>140.2</td>
<td>8.3</td>
</tr>
<tr>
<td>Modified 210 °C</td>
<td>13840</td>
<td>90.1</td>
<td>4.9</td>
</tr>
</tbody>
</table>

Small variation on modulus of elasticity

Large drop on bending strength and deflection on bending rupture

The modified material has tendency to unexpected break (brittle fracture) which must be taken into account during structural calculations.

Possibility of successful thermal modification of eucalypt wood.

Need to increase the duration of treatment, since the colour difference and other characteristics were not as high as those obtained for other species subjected to the same treatment.
ACKNOWLEDGEMENTS
This study was funded by project EucPlus - New processes and uses for eucalypt woods (PTDC/AGR-CFL/119752/2010) by FCT (Fundação para a Ciência e Tecnologia, Portugal). The Centro de Estudos Florestais is a research unit funded by FCT within the POCTI-FEDER programme. The first author acknowledges funding from FCT as a post-doctoral researcher.

Thank you for your attention!

Thermal modification on *Eucalyptus* wood: an essay