Biological hydrogen production by Anabaena sp. – Yield, energy and CO\textsubscript{2} analysis including fermentative biomass recovery

Ana F. Ferreiraa,*, Ana C. Marquesb, Ana P. Batistab, Paula A.S.S. Marquesb, Luísa Gouveiab, Carla M. Silvaa

aIDMEC - Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1 - 1049-001 Lisbon, Portugal
bLNEG - Energy and Geology National Laboratory, Bioenergy Unit, Estrada do Paço do Lumiar 22, 1649-038 Lisbon, Portugal

ARTICLE INFO

Article history:
Received 4 July 2011
Received in revised form 15 September 2011
Accepted 16 September 2011
Available online 17 October 2011

ABSTRACT

This paper presents laboratory results of biological production of hydrogen by photoautotrophic cyanobacterium Anabaena sp. Additional hydrogen production from residual Cyanobacteria fermentation was achieved by Enterobacter aerogenes bacteria. The authors evaluated the yield of \textsubscript{H}\textsubscript{2} production, the energy consumption and CO\textsubscript{2} emissions and the technological bottlenecks and possible improvements of the whole energy and CO\textsubscript{2} emission chain.

The authors did not attempt to extrapolate the results to an industrial scale, but to highlight the processes that need further optimization.

The experiments showed that the production of hydrogen from cyanobacteria Anabaena sp. is technically viable. The hydrogen yield for this case was 0.0114 kg\textsubscript{H\textsubscript{2}}/kg\textsubscript{biomass} which had a rough energy consumption of 1538 MJ/MJ\textsubscript{H\textsubscript{2}} and produced 1146 kg\textsubscript{CO\textsubscript{2}}/MJ\textsubscript{H\textsubscript{2}}. The use of photoautrophic residual cyanobacteria as a substrate in a dark-fermentation process increased the hydrogen yield by 8.1% but consumed 12.0% more of energy and produced 12.1% more of CO\textsubscript{2} showing that although the process increased the overall efficiency of hydrogen production it was not a viable energy and CO\textsubscript{2} emission solution. To make cyanobacteria-based biofuel production energy and environmentally relevant, efforts should be made to improve the hydrogen yield to values which are more competitive with glucose yields (0.1 kg\textsubscript{H\textsubscript{2}}/kg\textsubscript{biomass}). This could be achieved through the use of electricity with at least 80% of renewables and eliminating the unessential processes (e.g. pre-concentration centrifugation).

Copyright © 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Biofuels are gaining attention worldwide as a way to reduce the dependence on fossil fuels. The 2003/30/EC European directive aims at promoting the use of biofuels or other renewable fuels to replace diesel or petrol for transport purposes in each Member State, with a view to contributing to objectives such as meeting climate change commitments,