Assessment of PV and Wind Microgeneration’s Impact in the Power Quality of Low and Medium Voltage Distribution Networks

Paulo Bonifácio
Luis Rodrigues, Susana Viana and Ana Estanqueiro
Contextualization

Energy Quality Problems: HARMONICS!

- Electric Vehicles
- Nonlinear Loads
- μGeneration

Characterization: Harmonic Load Flow (HLF)

- Transformer Heating
- Resonance Conditions
- Greater Losses

Solution: Intelligent Domestic Agent (IDA)

Greater Complexity
Greater Data Volume
Greater Data Volume
Objectives – REIVE Project:

• Analyse the Impact of Microgeneration and Electric Vehicles integration in the low voltage grid and in Power:
 – Access Total Harmonic Distortion (THD).
 – Evaluate Neutral currents.
 – LNEG: Access flicker levels and dynamic voltage profile in local distribution network.

Bonifácio, et al, SIW 12
Developed Work

• Development of a Harmonic Load Flow Tool (TEH) for 3-phase Balanced networks – Matlab.
• Development of a Modular Reconfigurable Consumer Model – IDA.
• Creation of a Power Quality Assessment Tool:
 • Low Voltage 3-phase networks.
 • Balanced and Unbalanced
 • 1 & 3-phase consumers.
 • Implementation in Matlab/Simulink.
Single-Phase Domestic Load Model

Intelligent Domestic Agent – IDA:

- Household Loads (HH).
- Non Linear Loads.
 - Electric Vehicles (EV).
- Microgeneration
 - Photovoltaic Generator (PV).
 - Wind Turbine Generator (WTG).

Connection Point To Low Voltage Network

Bonifácio, et al, SIW 12
IDA - Components

• I – Current Injection/Consumption Models
 • Fundamental and Harmonic currents represented through ideal current sources.
 • Individual Input/output current spectrum for each Power Converter connected to the grid.

• II – Physical Models
 • Modelling of the behaviour of the components with fluctuations of renewable resources.

Bonifácio, et al, SIW 12
Model Validation – Balanced/Unbalanced Networks

Bonifácio, et al, SIW 12
Test Network I
Test Network II

Challenges
- 6 lines to substation.
- 142 clients 1 or 3-phase.
- Imprecise data regarding the connection of single-phase clients.

Solutions
- Aggregation of single-phase loads in a single ADI for each phase and for each bus bar.
- Aggregation of 3-phase loads in a single load for each bus bar.
- Sequential distribution of the ADIs for each line.
Test Methodology

Voltage FFT

![Voltage FFT Diagram]

Fundamental (60Hz) = 228.7, THD = 1.50%

Current FFT

![Current FFT Diagram]

Fundamental (60Hz) = 288.60, THD = 2.88%

Bonifácio, et al, SIW 12
Test Cases

<table>
<thead>
<tr>
<th>Case</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>• Only Loads – peak scenario</td>
</tr>
</tbody>
</table>
| II | • Loads – 25% of peak load
 | • Electric Vehicles – all single-phase loads |
| III | • Loads – 25% of peak load
 | • Electric Vehicles – all single-phase loads
 | • Microgeneration – 1 source for each bus bar |
| IV | • Loads – 25% of peak load
 | • Electric Vehicles – 1 per bus
 | • Microgeneration – all single-phase loads |
Case III and IV - Branching

Utilization of Real World Signals Obtained from LV – PV Inverters.

- **Cases:**
 - (T) – Theoretical Model.
 - (S) – Current Model for Device 1.
 - (F) – Current Model for Device 2.
Results – Transformer (LV-Side)

Voltage (p.u.)

<table>
<thead>
<tr>
<th>Case</th>
<th>I (T)</th>
<th>II (T)</th>
<th>III (T)</th>
<th>IV (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph1</td>
<td>0.988</td>
<td>0.990</td>
<td>0.992</td>
<td>0.994</td>
</tr>
<tr>
<td>Ph2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ph3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

THDv (%)

<table>
<thead>
<tr>
<th>Case</th>
<th>I (T)</th>
<th>II (T)</th>
<th>III (T)</th>
<th>IV (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph1</td>
<td>11.51</td>
<td>10.34</td>
<td>99.89</td>
<td>154.50</td>
</tr>
<tr>
<td>Ph2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ph3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Current (A)

<table>
<thead>
<tr>
<th>Case</th>
<th>I (T)</th>
<th>II (T)</th>
<th>III (T)</th>
<th>IV (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph1</td>
<td>11.51</td>
<td>10.34</td>
<td>99.89</td>
<td>154.50</td>
</tr>
<tr>
<td>Ph2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ph3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

THDi (%)
Different Device Signals

Bonifácio, et al, SIW 12
Voltage THD Comparison

THD – According to IEC 61000-2-2 – 50th Harmonic – 2500 Hz

THD – Full Harmonic Spectrum – 21 kHz

Values for Case IV(F) at Bus 5

Bonifácio, et al, SIW 12
Conclusions

• Voltage and Current Total Harmonic Distortion Values are conforming to IEC 61000-3-2, EN50160 standards.
• Results present a significant contribution as pre-normative recommendation in considering high frequency harmonics acquired from real device measurements (f>40).
Thanks For Your Time