Experience and Challenges With Short-Term Balancing in European Systems With Large Share of Wind Power

Lennart Söder, Senior Member, IEEE, Hans Abildgaard, Member, IEEE, Ana Estanqueiro, Member, IEEE, Camille Hamon, Student Member, IEEE, Hannele Holttinen, Eamonn Lannoye, Student Member, IEEE, Emilio Gómez-Lázaro, Senior Member, IEEE, Mark O'Malley, Fellow, IEEE, and Uwe Zimmermann

Abstract—The amount of wind power in the world is quickly increasing. The background for this development is improved technology, decreased costs for the units, and increased concern regarding environmental problems of competing technologies such as fossil fuels. Some areas are starting to experience very high penetration levels of wind and there have been many instances when wind power has exceeded 50% of the electrical energy production in some balancing areas. The aims of this paper are to show the increased need for balancing, caused by wind power in the minutes to hourly time scale, and to show how this balancing has been performed in some systems when the wind share was higher than 50%. Experience has shown that this is possible, but that there are some challenges that have to be solved as the amount of wind power increases.

Index Terms—Balancing of wind power, frequency control, integration, power system, power transmission, wind power.

I. INTRODUCTION

The world's total electric consumption is currently around 20 200 TWh per year [1], of which 25% [2] is provided by wind power. In 2010, Spain covered 16% [3] of their electrical energy demand with wind power. The corresponding numbers for Portugal were 17% for 2010 [4], 13% for Ireland [5], and 23% for Western Denmark in 2009 [6].

Manuscript received August 30, 2011; revised May 28, 2012; accepted May 28, 2012. This paper has been written within the IEA WIND Task 25: Design and Operation of Power Systems with Large Amounts of Wind Power international collaboration (http://www.ieawind.org). This work was supported by MICINN. ENE2009–13106.

L. Söder and C. Hamon are with the KTH—Royal Institute of Technology, S-100 44 Stockholm, Sweden (e-mail: lennart.soder@ee.kth.se; camille.hamon@ee.kth.se).

H. Abildgaard is with the Energinet.dk, DK-7000 Fredericia, Denmark (e-mail: hab@energinet.dk).

A. Estanqueiro is with the Instituto Nacional de Engenharia, Tecnologia e Inovação, INETI, 1649-038 Lisboa Codex, Portugal (e-mail: ana.estanqueiro@ineti.pt).

H. Holttinen is with the VTT, Technical Research Centre of Finland, FIN-02044 VTT, Finland (e-mail: hannele.holttinen@vtt.fi).

E. Lannoye and M. O’Malley are with the University College Dublin, Dublin 4, Ireland (e-mail: eamonn.lannoye@ucd.ie; mark.omalley@ucd.ie).

E. Gomez-Lazaro is with the Renewable Energy Research Institute, DITEAC, EDII-AB, Universidad de Castilla-La Mancha, 02071 Albacete, Spain (e-mail: emilio.gomez@uclm.es).

U. Zimmermann is with the 50 Hertz Transmission GmbH, 12435 Berlin, Germany (e-mail: uwe.zimmermann@50hertz-transmission.net).

Color versions of one or more of the figures in this paper are available online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSTE.2012.2208483

II. EXPERIENCE OF SHORT-TERM WIND POWER CHANGES IN SOME HIGH PENETRATION CASES

In Ireland, Portugal, Spain, Germany, Denmark, and parts of Sweden, experience has been gained into the frequency of occurrence of changes in wind power, for a variety of ramp magnitudes. The size of the changes depends on meteorology, the amount of wind power capacity and the distance between wind power installations. The size of the changes also depends on how long a time period one studies; the variation within 30 min is larger than variation within 5 min. Some statistics from selected places are shown in the following.

A. Sweden—Gotland

On the island of Gotland, there is 110 MW of wind power installed. The island is connected to the mainland by two high-voltage direct current (HVDC) cables. In most situations, the direction of the power flow is from the mainland to Gotland, but at low load and high wind, the power flows in the opposite direction. This requires a flexible operation of the HVDC lines.

The wind power data studied here consists of a total of 27 411 five-min measurements of both the load and the wind power production on Gotland, during the period of March 12–June 16, 2011. Eighty-five percent of all wind power production is measured, while 15% is estimated from nearby units. The mean wind power production during this period was 26.8 MW, i.e., 24% of installed capacity.

The standard deviation (as percent of installed capacity) for the three studied time periods were 1.41% (5 min), 2.94%