Structural Features of Electrodeposited Copper Electrodes for CO₂ Conversion

A. S. Reis Machado¹,a, T. R. C. Fernandes¹,a, T. Pardal¹,a, and C. M. Rangel²,b

¹Omnidea, Lda., Travessa António Gedeão, n.º 9, 3510-017 Viseu, Portugal,
²Laboratório Nacional de Energia e Geologia, Fuel Cells and Hydrogen Unit
Paço do Lumiar, 22, 1649-038 Lisboa, Portugal,
²info@omnidea.net, bcarmen.rangel@lneg.pt (corresponding author)

Keywords: carbon dioxide, copper, ruthenium, nickel, electrocatalyst, voltammetry, energy.

Abstract. Direct electrochemical reduction of CO₂ is a process that could contribute to the reduction of the emission of greenhouse gases by using CO₂ as a raw material for fuel production. This paper focuses on voltammetric studies of functionalized electrodes for the electrochemical conversion of CO₂ and reports on its use as a tool for electrode screening and optimization. Nickel substrates modified with copper and ruthenium/copper electrodeposits were studied. Voltammetric experiments indicate that CO₂ electroreduction follows a nickel type mechanism in which this electrochemical reaction occurs simultaneously and in competition with hydrogen evolution. A significant inhibition of hydrogen evolution reaction is observed in nickel modified electrodes. Inhibition characteristics and the onset of carbon dioxide conversion are dependent of the type of electrode functionalization. Voltammetry is thus a powerful tool to evaluate electrode modifications and for tuning electrodes for an optimized electrocatalytic performance.

Introduction

Efforts are continuously being made to reduce the emission of greenhouse gases, especially CO₂. Direct electrochemical reduction of CO₂ is a process that could contribute to the solution of this problem by turning a problematic waste product into useful fuel. In Portugal alone, 27 MTons of CO₂ are released by the ten most polluting Portuguese companies whilst worldwide the emissions amount to 25 billion tonnes of CO₂/year. The cost of the emissions is currently in the range of 10-20 € per tonne of CO₂. Carbon dioxide is therefore an abundant and cheap raw material. CO₂ sequestration and its use as a raw material for fuel production would represent not only a contribution to compliance with the Kyoto agreement, but would simultaneously provide an opportunity for the realization of the full potential of renewable intermittent sources bringing an increase in the efficiency of installed capacity. The technology would allow the storage of excess energy as fuel during off peak periods and injecting it into the power grid during the peaks of high energy consumption.

Omnidea in collaboration with Research Institutes is developing a technology based upon a regenerative energy storage cycle. In this cycle the recharge system, which is composed of an electrochemical cell, converts CO₂ into hydrocarbons using an external source of power (e.g. solar power), Fig. 1. The discharge system produces electric energy when hydrocarbons and oxygen, from the recharge system, are directly supplied to a Solid Oxide Fuel Cell (SOFC).

The advantages of such a technology are that it is a regenerative system, employs compact and safe equipment and represents a low cost system for producing fuel with a high energy density.

Indirect reduction of CO₂ was reported for the first time by Petrova G. N. et al. [2]. A mercury electrode in an aqueous electrolyte at pH 7, containing TiCl₃, Na₂MoO₄ and pyrocatechol, yielded a total faradaic efficiency for cathodic hydrocarbon generation of about 0.2% at 7 mA/cm², with methane being the major hydrocarbon component.