GHGT-11
Application of advanced technologies for CO₂ capture from industrial sources

Matteo C. Romano, Rahul Anantharaman, Antti Arasto, Dursun Can Ozcan, Hyungwoong Ahn, Jan Wilco Dijkstra, Michel Carbo, Dulce Boavida

Abstract

The great majority of the research on CO₂ capture worldwide is today devoted to the integration of new technologies in power plants, which are responsible for about 80% of the worldwide CO₂ emission from large stationary sources. The remaining 20% are emitted from industrial sources, mainly cement production plants (~7% of the total emission), refineries (~6%) and iron and steel industry (~5%). Despite their lower overall contribution, the CO₂ concentration in flue gas and the average emission per source can be higher than in power plants. Therefore, application of CO₂ capture processes on these sources can be more effective and can lead to competitive cost of the CO₂ avoided with respect to power plants. Furthermore, industrial CO₂ capture could be an important early-opportunity application, or a facilitate demonstration of capture technology at a relative small scale or in a side stream.

This paper results from a collaborative activity carried out within the Joint Programme on Carbon Capture and Storage of the European Energy Research Alliance (EEERA CCS-JP) and aims at investigating the potentiality of new CO₂ technologies in the application on the major industrial emitters.

© 2013 The Authors. Published by Elsevier Ltd.
Selection and/or peer-review under responsibility of GHGT

Keywords: CCS, CO₂, industry, cement, iron, steel, refineries.

1. Introduction

The great majority of the research on CO₂ capture worldwide is today devoted to the integration of