Definition of the Portuguese frameworks with international relevance as an input for the European geological heritage characterisation

This work constitutes the first contribution for the systematisation of geological heritage knowledge in Portugal, following the international recommendations for the characterisation of geological heritage (IUGS, ProGEO). The application of the ProGEO methodology has resulted in the creation of fourteen frameworks with international relevance, established by consensus among the Portuguese geological community. The description of each category in this paper is not exhaustive and only the most relevant scientific settings are presented. The following are the three key outcomes of this work: i) At a national level, the most important geosites are identified, indicating where geoscience efforts should be prioritised based on scientific justification; ii) At a regional level, conditions have been developed to foster dialogue with Spanish colleagues in order to create Iberian frameworks; iii) At an international level, it is now possible to integrate Portuguese geosites into the global inventories promoted by IUGS, UNESCO, and ProGEO.

Introduction (by J. Brilha)

The identification, characterisation, conservation, and grading of geological heritage are gaining interest among the geological community. During the 32nd International Congress, held in Italy on August 2004, three thematic sessions were organised with about 160 oral and poster presentations. During the last decade, many countries have developed several initiatives to increase knowledge of geological heritage. This individual effort brought different approaches to this task making the establishment of a constructive dialogue between specialists difficult.

In spite of national initiatives, the first step towards the organisation of inventory strategies was given by ProGEO (The European Association for the Conservation of the Geological Heritage) following the GILGES work (of IUGS and UNESCO) and by the International Union of Geological Sciences (IUGS) (Wimbledon, 1996a). In 1996, this international institution created Geosites: a project engaged in the promotion of a factual basis to support national and international geoscience and cultural heritage initiatives. Until 2004 the IUGS’s Global Geosciences Working Group, together with UNESCO and ProGEO, supported the establishment of national inventories and promoted links between neighbour countries (ProGEO, 1998).

Recently, IUGS changed the focus and direction of its efforts towards geotourism and geoparks, and GEOSEE was created in 2004. ProGEO continues with the construction of national and regional comparative inventories in Europe, furthering the original Geosites aims. The methodology proposed by the IUGS for national inventories was defined during the First Workshop on Geosites at the 2nd International Symposium ProGEO on the Conservation of the Geological Heritage held in Rome in 1996, based on ProGEO experience (Wimbledon et al., 1999). The inventory is founded on the identification of geological thematic categories in each country rather than on the recognition of isolated sites. The definition of national frameworks systematises local inventories and allows the establishment of trans-national comparisons (Wimbledon, 1996b). This comparison and correlation task has already been initiated in Scandinavian countries (Fredén et al., 2004), Baltic states (Sakunskas et al., 2004) and southeastern European countries (Theodosiou et al., 2004), mainly promoted by ProGEO.

In Portugal, the inventory, characterisation and valuation of geological heritage has been done in an unsystematic manner. A list of outstanding geosites and places at risk has been collected with contributions from the former Geological Survey, National Natural History Museum, University Geology Departments and the League for Nature Protection. Unfortunately, the state institutions responsible for Nature Conservation policies have never adopted geoscientific approaches as a priority. The few preserved geosites have resulted from occasional and local circumstances with no continuity.

The Portuguese ProGEO group, created in 2000, congregates geologists from a majority of the geological institutions. This group decided to implement in Portugal the methodologies suggested by IUGS and ProGEO and started the work of defining national frameworks of international relevance. This priority was established in order to provide a Portuguese entry for the Geosites list and to promote a dialogue with Spanish colleagues (García-Cortés et al., 2001).

The process was opened to all national geological institutions and publicised by circles and on the ProGEO-Portugal web site. In May 2004, during an open meeting held in the former Geological Survey headquarters, fourteen frameworks with international relevance were established:

- A geotraverse through the Variscan Fold Belt in Portugal;
A geotraverse through the Variscan Fold Belt in Portugal (by A. Ribeiro)

The backbone of the Iberian Peninsula is formed by basement rocks that are part of the Variscan Fold Belt. This belt extends from Central Europe to Western Europe and Morocco delineating a series of arcuate mountains. This belt was generated by the opening and closure of oceans of variable size between the upper Proterozoic (~540 Ma) and the upper Paleozoic (~250 Ma).

The best traverse across this Variscan Fold Belt is in the Iberian Peninsula because: i) the traverse is the most complete, from the Cantabrian Zone around Oviedo in NE Spain to the foreland (South Portuguese Zone in SW Portugal), and ii) the basement is exposed continuously if we avoid the Proterozoic basins in its borders and the discontinuous Cenozoic basins in the center of Iberia. Therefore, its pristine geofeatureal features are preserved from more recent events related to the opening of the Atlantic and closure of Tethys (Ribeiro et al., 1991).

Finally, the climatic conditions and vertical movements provide beautiful exposures of rocks and structures in coastal cliffs, deep rivers and elevated mountains. In fact, some of the most significant exposures of the belt are located at different spots in Iberia. They contribute to a deeper understanding of the processes that shaped the belt and its extension downwards to deeper crustal levels.

Geology and metallogenesis of Iberian Pyrite Belt (by F. J. A. S. Barriga, J. M. R. S. Relvas, J. M. X. Matos)

The Iberian Pyrite Belt (IPB) contains a colossal amount of volcanic-hosted massive sulphides, with a pre-mining total of more than 1750 Mt containing 22 Mt Cu, 34 Mt Zn and 12 Mt Pb, respectively. This is comparable only, on a worldwide basis, to the Ural Belt of Russia. However, while the Ural Belt extends for nearly 2500 km, the IPB is only about 250 km long. Thus, the concentration of sulphide ores is an order of magnitude greater in the IPB.

The IPB has been mined continuously since the Chalcolithic era. The Rio Tinto deposits of Spain, the first to gain world fame, are considered the largest of their class ever to form, with over 500 Mt of sulphide ores. The Aljustrel and Neves Corvo deposits (Portugal) are among the world's richest deposits of their class in Zn and Cu (>8Mt and >4Mt, respectively). Additionally, Neves Corvo's copper and tin ores depict the highest grades recorded for deposits of their class (e.g. Carvalho et al., 1999, Relvas et al., 2002).

The deposits are hosted by a well-preserved volcanic-sedimentary complex, in a tectonic setting interpreted to represent continental fragments that collided obliquely during the Variscan orogeny, following subduction of an oceanic realm. The tectonic evolution produced thrusting and formation of pull-apart basins, which host the deposits (see Tomos et al., 2002). The post-depositional history of the deposits is well recorded.

All geological and metallogenetic aspects of the IPB are well studied and many constitute classic studies in the literature. Detrital and chemical sedimentation, volcaniclastic deposition, hydrothermal activity and mineralization, syn-sedimentary and transpressive deformation are all clearly visible. Additionally, the IPB is studied also through detailed comparisons with present-day submarine hydrothermal sites, including examples not only in the Atlantic but also in the Pacific (e.g. Pacmanus in Papua New Guinea). The IPB is still an actively studied geological object. Among the main aspects being researched, we can mention sedimenation and its role with respect to mineralization, submarine physical volcanology, the position of mineralization...
with respect to the coeval sea floor, and the origin of metals from different crustal reservoirs.

It should be noted that the erosion level deepens markedly from West to East in the IPB. Thus, most mines in Portugal are underground, whereas in Spain open pits abound. This generates different types of exposures and different degrees of weathering, adding to the variety of situations to visit.

The trans-National Iberian Pyrite Belt has already been proposed for inclusion in the Geosites list of geological frameworks, from a Spanish national point of view (Garcia-Cortez et al., 2001). The present contribution is intended for fusion with the latter.

The Iberian W-Sn Metallogenic Province (by F. Noronha)

The W/Sn province contains many spectacular exposures, in both the field and underground. The Panasqueira mine specifically is a world famous field trip destination. Many other occurrences and ancient mines are easily accessible, including exposures with abundant scheelite, prone to nocturnal investigation with a minerlight. In general, field relationships are easily seen and interpretable. The W and/or Sn deposits are distributed through an area from Galicia to Castilla (Spain) through Northern and Central Portugal. The Sn deposits are mainly of pegmatitic type. The W deposits can be considered of two types: quartz vein type, the most important, and skarn type. Where the W and/or Sn mineralization occurs we can see the presence of granite intrusions in marine sedimentary series dated from Upper Precambrian to Silurian (Neiva, 1944; Thadeu, 1973; Schermheron, 1981).

The Variscan granitic magmatism (orogenic) can be subdivided in two groups: peraluminous granites or two-mica granites (muscovite is the dominant mica); monzonitic granites and granodiorites (Feerreira et al., 1987). The peraluminous granites (320 Ma – 300 Ma) are of mesocrustal origin; the second group (300 – 290 Ma) originated deep in the crust and corresponds to hotter dry magmas. Although Sn pegmatites occur mainly associated to the granites of the first group, the W quartz veins are dominantly related with the second group of granites. The granites spatially associated with mineralization can be considered as “specialized” granites, where the “specialization” is related with the mechanisms of concentration like magmatic differentiation and/or late to post-magmatic events responsible for deuteric alteration. The W content in granites associated with mineralization is low (<7 ppm) whereas the granites associated with Sn pegmatite mineralization are rich (>30 ppm) (Deré et al., 1982). This means that magmatic differentiation and/or late to post magmatic events cannot be solely responsible for the W deposits, a contribution of geochemical processes is necessary for ore genesis. The fluid inclusions in minerals of the main deposits, like Panasqueira and Borrach, do not register the presence of magmatic fluids. The main fluids present in these W/Sn Variscan geothermal systems were meteoric fluids re-equilibrated after deep circulation in the crust and then responsible for the mobilization of stockmetal from the rocks. The orebodies were deposited mainly in structural traps (Kelly and Rye, 1979; Bussink et al., 1984; Polya, 1989; Noronha et al., 1999).

The Graptolites (19 biozones recognized) are the most common fossils, but other biological groups occur such as ostracodarts, bivalves, crinoids and hexactinellid sponges, like Protospongia iberica (Rigby et al., 1997).

The lowermost part of the Silurian succession assigned to the basal Rhuddanian Parakidagnostus acuminatus Biozone (Piçarra et al., 1995) corresponds to the boundary beds of the Colorado and “Xistos com Nódulos” formations. Graptolite-bearing rocks consist of quartzite beds and lichens alternating with black shales. It is followed by strongly weathered black shales, 20-25 m thick, with rare lycite layers, that constitute the dominant lithofacies of the “Xistos com Nódulos” Formation. This formation extends from the Rhuddanian Cystograpthus vesiculissus Biozone (lower Llandovery) up to the Gorstinian Lobagnostus scanicus Biozone (lower Ludlow). The graptolite biozones identified in this interval are: the Rhuddanian Corongrapthus pyulus Biozone, the Gorussian Sinograptus conula, and the Upper Gorussian Lookelelograptus pyulus Biozone (lower Ludlow). The graptolite biozones in this interval are: the Rhuddanian Corongrapthus pyulus Biozone, the Gorussian Sinograptus conula, and the Upper Gorussian Lookelelograptus pyulus Biozone (lower Ludlow). The graptolite biozones in this interval are: the Rhuddanian Corongrapthus pyulus Biozone, the Gorussian Sinograptus conula, and the Upper Gorussian Lookelelograptus pyulus Biozone (lower Ludlow).

The uppermost Silurian strata are represented by the lower part of the “Xistos Raulados” Formation, about 20-30 m thick. It consists of dark siltstones alternating with shales yielding graptolites of the Frondi Neocolonograpthus parvulus and Monograptus bocaei biozones (Piçarra et al., 1995).

The Silurian-Devonian boundary is placed in the first occurrence of graptolites of the basal Lochkovian Monograptus uniformis Biozone (Piçarra, 1998), within those dark siltstones.

The Silurian succession of the Barrancos area is lithologically and faunistically similar to that of the Peri-Gondwanan Europe and North Africa areas (i.e. Spanish Ossa Morena Zene, Cataluna, Sardinia, Saxothuringia, Barrandian and Morocco).

Meso-Cenozoic of the Algarve (by M. Cachão, P. Terrinha, A. Santos)

By its geographical position, ENE-WSW orientation and lithological diversity the Algarve geologic province stands out as unique from stratigraphic (from Late Triassic to Quaternary with major hiatus from Cenomanian to Lower Miocene) and morpho-tectonic points of view. The Variscan most external Carboniferous unit constitutes the basement of the Mesozoic and Cenozoic sedimentary packages, deposited on two totally distinct superposed basins (Terrinha, 1998).

From Middle-Upper Triassic (Rhaetian) to Hettangian sediments evolved from continental (fluvialitic red sandstones), to shallow marine, deposited over the entire Algarve region, including evaporites and syn-sedimentary tectonic magmatism (Het-tangian-Sinemurian Basaltic lava flows, volcanic ashes and pyroclasts) (Marins, 1991). To the south of the Tavira-Algoz-Sagres tectonic line, the Hettangian Silves pelites are richer in evaporite facies. One of its salt walls, the Loulé diapir (Central Algarve), is currently being explored in an underground mine. Subsidence and carbonate platform conditions were established until the end of Jurassic. Lower to Middle Jurassic reef barrier to open external platform facies outcrops at Sagres. Here Aalenian-Bajocian karsified reefs are covered by Upper Bajocian-Lower Bathonian Zorophycus rich pelagic grey marls (Prai da Mareta and Forche de Bixio) followed by Middle Oxfordian condensed ammonite rich limestones indicating that the Algarve Basin remained a Mediterranean sub-domain province of the Tethyan domain (Rocha, 1976).

The most important tectonic inversion of the basin pre-dated the Miocene (Terrinha, 1998), and includes the peralkaline (nepheline

The Silurian of the Portuguese Ossa Morena Zone (by J. M. Piçarra)

The Barrancos area, within the southeastern Portuguese part of the Ossa Morena Zone, contains the well-documented Silurian succession from Portugal (see Robardet et al., 1998, for references; Piçarra, 2000), which is now being used globally as a reference in biochronostratigraphy and paleogeography.
River network, rajas and Appalachian-type landscapes of the Hesperic massif (by P. P. Cunha)

The diverse and rich geomorphological heritage that can be observed in the NW of Iberia provides evidence of a geological history of international interest and importance. Erosion of the Hesperic Massif has resulted in a region of low relief called the Iberian Meseta, surrounded by sedimentary basins. However, the denudation was not continuous and involved a succession of cycles of erosion and weathering that never resulted in perfect planation. Due to the different resistance to weathering of the basement, the narrow NW-SE trending Palaeozoic synclines produced quartzitic ridges, whereas the large anticlines, that consist of slates and metagreywakes, developed flat valleys (Appalachian-type relief; Martín-Serrano, 1988). In west central Portugal, Albian sedimentary rocks onlapping these quartzitic inselbergs suggest that the long period of general chemical weathering occurred in Early to Middle Jurassic and Early Cretaceous times (Cunha and Pena dos Reis, 1995). Sedimentary and geomorphological evidence of extensive Palaeogene to middle Miocene alluvial plain drainage systems contrasts with evidence of geographically restricted later Miocene-Zanclean alluvial fan sedimentation. This change happened concomitantly with uplift events of the Portuguese Central Range and other higher relief areas (Cunha, 1992a). Alluvial fan sedimentation culminates with poorly-sorted oche conglomerates, containing large quartzitic boulders in proximal areas fed by quartzitic relief areas, called rajas in the Portuguese and Spanish Central Range piedmonts. Locally, fan sedimentation passes laterally into fluvial deposits that document the first evolutionary stage of the present river networks draining to the Atlantic, considered to be of Piacenzian age, predating the progressive fluvial incision that produced the staircases of river terraces (Cunha et al., 2005).

In working out this framework the geological diversity of Portugal has several advantages: 1) Sedimentary evidence of the progressive lateral and longitudinal facies evolution, from the interior areas of the Massif to the near Atlantic ocean, a major external forcing (Cunha et al., 1993); 2) The best dating of the sedimentary episode (allostratigraphic unit USB13-Piacenzian; Cunha, 1992b) that contains the rajas, but also fluvial and estuarine/coastal marine deposits with fossils providing precise biostratigraphy (Cachão & Silva, 1990); 3) Evidence of late Cenozoic tectonic events that have controlled the morphodynamic episodes (Cabral, 1995). The allostratigraphic unit USB13 display characteristics typical of kaolinization and hydromorphism, reflecting a more humid and hot climate and important Atlantic fluvial drainage (Cunha, 2000a).

Because of their geomorphological and sedimentary records, rivers provide important archives of Earth history, particularly as indicators of tectonic, climatic or eustatic events. The analysis of long fluvial sequences, like the ones in which the rajas represent the first stage of fluvial evolution, provides stratigraphic keys for understanding other Cenozoic sequences on land.

Tertiary basins of the western Iberian margin (by P. P. Cunha and J. Pais)

A wide range of Cenozoic geological features occur in Portugal, such as the Central Portuguese Cordillera (CPC) and Estremendo Massif, with its intervening craton, and other significant topographic features (e.g. the Western Mountains and the Arrábida chain), offshore margin-bounding structures, and sedimentary basins providing evidence for the regional evolution. These basins vary considerably in size and have formed under compressional and transpressional tectonic regimes (Ribeiro et al., 1990; Alves et al., 2003), generated...
during the phases of compression between Iberia, Europe and Africa.

The main Portuguese Tertiary basins (Mondego and Lower Tagus) are located in the western border of the Iberian Massif and separated by the CPC, a south-west-trending cordillera uplifted in the late Cenozoic. Further inland, smaller Tertiary basins occur, both to the north and south of the CPC. The Portuguese Tertiary basins have marked tectonic, morphological and lithological differences. Their depositional records include continental units grading westward into marine sediments that document the post-Mesozoic palaeogeographic, tectonic, climatic and eustatic events that occurred in western Iberia. Additionally, the limited vegetation, weathering and the considerable fluvial incision observed onshore have produced good exposures, the majority of which are located along the coast in regions of present-day temperate climate.

Unconformity-bounded units have been recognised in the western Iberian margin (Cunha, 1992a, 1992b, 2000b; Pena dos Reis et al., 1992) and high-resolution sequence stratigraphy is currently being applied to the estuarine Miocone units of the Lower Tagus Basin (Antunes et al., 2000; Legoinha, 2001). The distribution of depositional facies, particularly alluvial deposits interfingered with marine siliciclastics, and the abundance of macro- and microfaunas recorded in this basin demonstrate the exceptional importance of the Lisbon-Setubal Peninsula sediments for the study of the Neogene evolution of Iberia. Correlations are based on several taxonomic groups — foraminifera, ostracoda, dinoflagellates, pollen, spores and mammals — coupled with isotopic dating and palaeoclimatic stratigraphy. Inland, continental successions clearly reflect the influence of tectonics and climate on the stratigraphic evolution of the basin.

The geological importance of the Tertiary basins of western Iberia is underlined by its specific location on the Atlantic coast, which allows the use of detailed biostratigraphic and sedimentary information in the study of the major tectonic, climatic and eustatic events affecting the North Atlantic margin.

Jurassic record in the Lusitanian Basin
(by M. H. Henriques, A. C. Azeredo, L. V. Duarte, M. M. Ramalho)

The Jurassic System in Portugal crops out in two basins, related with the genesis of the Atlantic Ocean: Lusitanian (West Portugal) and Algarver (South Portugal). The Jurassic record of the Lusitanian Basin ranges in age from the Hettangian to the Tithonian, providing a unique opportunity for onshore study of pre-, syn- and post-rifting deposits. These are particularly well represented in several reference sections, the most relevant of them located on the western Atlantic coastline. At Cabo Mondego, the Lower-Uppper Jurassic section includes the Bajocian GSSP, the first stage boundary established for the Jurassic System by the IUGS (Pavia & Enay, 1997; Figure 1). The "golden spike" has been defined within a thick series of marine and coastal sediments, cropping out in continuity along the coast. At Peniche, the Lower Jurassic section includes the presently proposed candidate for the Toarcian GSSP (Elmi et al., 1996; Figure 2). Again, the lower boundary of the Toarcian is located within a wide outline showing continuous coastal exposure of outer marine sediments (including turbidites), ranging in age from the Sinemurian to Aalenian. The Peniche and Cabo Mondego sections complement each other, representing a complete stratigraphic succession for the Lower and Middle Jurassic distal facies of the basin, and probably are the best record worldwide of the history of the Proto-Atlantic during those periods. In addition, other excellent sections on Lower-Middle Jurassic marine series are displayed at more inner locations in the basin. Their rich palaeontological, stratigraphical and sedimentological information justifies the huge amount of scientific work that has been published worldwide from the 19th century onwards (references in Duarte, 1995, 2004; Henriques et al., 1994; Henriques, 2004). The Middle Jurassic is also largely composed of inner marine carbonate facies, in particular towards the east (Macao Calcário Estremenho, Serra de Sicô), where excellent exposures exhibit varied lito- and biofacies. These provide detailed sedimentary, palaeogeographical, stratigraphical and micropalaeontological data (Azeredo, 1993; Soares et al., 1993; and references therein). The Middle-Upper Jurassic transition records a major disconformity, as in other Atlantic basins but with a few uncommon features (Azeredo et al., 2002). The Upper Jurassic is represented by all of its stages, exhibiting a wide range of facies types in excellent outcrops (e.g. Cabo Espichel, Sintra-Cascais, Torres Vedras-Montejunto, Baleal-Nazaré, Cabo Mondego). These comprise alluvial, fluviol and deltaic deposits; lagoist; lagoix; lacustrine, restricted to hypersaline lagional sediments; reeal to outer marine limestones; and mass-flow deposits (e.g. Ramalho, 1971; Leinfelder and Wilson, 1998; and references therein).

Dinosaurs of western Iberia (by P. Dantas, V. Santos, M. Cachao)

The Lusitanian basin (Western Iberia) contains exceptionally well-preserved body fossils and ichnichnies of dinosaurs in its Mesozoic units. Ossotheological remains were mainly recovered from Upper Jurassic to Lower Cretaceous formations (Pombal, Leiria, Alcobaca and Batalha in the north and Alenquer and Torres Vedras at the south). At Pombal remains of Theropoda and Sauropoda have been recovered (Sauvage, 1897-98; Perez-Moreno et al., 1999) in particular Allosaurus fragilis, an inter-continental species present in the Upper Kimmeridgian-Lower Tithonian Alcobaca Formation (Perez-Moreno et al., 1999, Dantas et al., 1999). Further South, at Leiria, the Late Oxfordian-to Early Kimmeridgian Guimarota fossiliferous lignite mine (Mohr, 1989; Krebs, 1991; Helmdach, 1971, 1973-74), provided Ornithischia (Hypsilophodontidae, Phylloclad, Thulborn, 1973), Sauropoda Brachiosauridae, Theropoda (Allosauridae, Compsognathus, Tyrannosauridae, Troodontidae, cf. Archaeopteryx) (Rauhut, 2000) and a remarkable diversity of microvertebrates in particular four orders of Mesozoic mammals: Docodont, Multibuculata, Dryolestida and Zatheria (Martin and Krebs, 2000), together with plant groups (Charophyta, Pteridophyta, Cycadales, Bennettiales, Anurocaricaceae, Cheirodophyidae and Cupressaceae) (Helmdach, 1971, 1973-74; Kühlke, 1968; Krsat, 1980; Thulborn, 1973; Weigert, 1995; Martin and Krebs, 2000). The rich delta facies of the Lourinhã formation (Wilson et al., 1989) are particularly rich in Theropoda, Sauropoda, stegosaurs, ankylosaurs and Ornithopoda together with dinosaur eggs, gastrooliths and footprints, as well as other groups such as Charophyta, Mollusca, Ostracoda, fishes, Quelonia, and Crocodyliformes (Lapparent and Zbyszewski, 1951, 1957; Werner, 1986; Mohr, 1989, Galton, 1991, 1994; Manuppella et al., 1999; Dantas in Sanz, 2000). Recent discoveries include eggs with theropod embryos (Mateus et al., 1998), and the sauropod Lourinhasaurus alenquerensis (Dantas et al., 1998). Ichnological remains are found in several locations around Lisbon. At Pedra da Maia (Espichel formation; Upper Jurassic) dozens of trackways preserved both manus and pes morphologies, and reveals aspects of sauropod and theropod behavior such as herd and limping movement (Lockley et al., 1994). Pego Longo-Carenque (Belasian formation; Middle Cenomanian), displays a long trackway of sub-circular footprints (Santos et al., 1992) while at the Gaivinha quarry (Torres Novas), marly-limestone units of the Dogger (Upper Bajocian -Lower Bathonian) revealed long sauropod trackways, with new manus and pes print morphologies for this group (Santos, 2003).
Ordovician fossils from Valongo Anticline (by H. Couto)

The Ordovician rocks of the Valongo Anticline present important and widely known fossil-rich layers. The fossil record shows a great paleobiological evidence, evident by the presence of different forms of animal life, trace fossils and by the presence of seaweeds. The Valongo Formation, one of the most fossiliferous lithostratigraphic units of the Ordovician of Portugal, has become, for about a hundred years, an object of particular interest to several palaeontologists. Delgado (1908) was the first author to identify the fossils in this formation, having classified more than a hundred and a half invertebrate taxa (arthropods, molluscs, brachiopods, echinoderms, graptolites and several groups of uncertain affinity).

Throughout the 20th century, apart from some references to graptolites, brachiopods, cephalopods and echinoderms, the papers about trilobites must be stressed, mainly because some species of these marine arthropods were identified in Valongo for the very first time (Delgado 1882, Curtis, 1961; Romano, 1980, 1982; Romano and Henry, 1982, among others). Recent studies of rarer specimens include those on nautiloids of the Trochoidea genus (Babin et al., 1996; Couto and Gutiérrez-Marco, 2000), cystoids (Couto and Gutiérrez-Marco, 1999), machairodus, a group of the very rare Palaeozoic marine invertebrates, represented by the genus Plurimultus already identified by Delgado (Gutiérrez-Marco et al., 2000), stenostome bryozoans in brachiopod's "Orthis" noctilio valves and rostroconch molluscs (Couto and Gutiérrez-Marco, 2000). In relation to echinoderms, specimens of Homalozoa were identified (Gutiérrez-Marco and Meléndez, 1987; Couto and Gutiérrez-Marco, 2000) and the presence of an Asterozoa was pointed out for the first time (Couto and Gutiérrez-Marco, 2000). Finally, the occurrence of phosphate veins with linguid brachiopods in the Santa Justa Formation (Aremigan-Luvirinian transition) (Couto, 1993, Couto et al., 1999) must be emphasized. This occurrence allows correlation with similar veins in other parts of the Iberian Peninsula, France, Morocco, Yugoslavia and northwest of Argentina and also permits the reconstruction of the coastline at the end of Lower Ordovician.

This extremely important palaeontological heritage has been preserved ever since the creation of the Palaeozoic Park of Valongo in 1998, a cooperative venture between the Geology Department of the Faculty of Sciences of the University of Porto and the Municipality of Valongo (Couto and Dias, 1998, Couto et al., 2003).

Karst systems of Portugal (by J. A. Crispim)

Portuguese carbonate rocks support important karstlands, which include ten protected areas of different status. In the Hercynian chain, marbles and dolomitic limestone yielded residual hills of Estremoz and Adiga (Alentejo), which are remnants of past morphoclimatic settings. Palaeokarst is represented by multiple breccias and mineralizations at the contact with carbonate rock. Three caves are famous: Santo Adrião (Vimioso), with thick calcite deposit mined for alabaster; Escoural (Montemor), with rock paintings and engravings; and Algar de Santo António a rare karst window that supplies water to Alandroal.

Tectonic invasion of Mesozoic basins yielded marbles where karst processes developed karren fields, sinkholes and poljes (Martins, 1949; Feio, 1951; Cunha, 1990) like Pedra Farada (Sintra) and Cerro da Cabeça megaalopas (Ólhão), and Minde (Alecrimana) and Nave do Barão (Loulé) poljes. Fórnia de Alvados is a splendid reculée originated by headward erosion (Rodrigues, 1991).

Spectacular relief rise cut platforms and sea cliffs testify to the advance of the sea during the late Pliocene transgression (Cape Espichel surface, Arrábida; Aljubarrota platform, Candeiros) (Teixeira and Berthois, 1952; Pereira, 1989). Entrained valleys formed after sea retreat, provide insight into studies of prehistoric
The Azores Archipelago in the America-Eurasia-Africa triple junction
(by J. Madeira)

The Azores archipelago (a Portuguese Autonomous Region) is located on the triple junction between the American, Eurasian, and African plates (Laughton and Whimnesh, 1974). The intervening plate boundaries are the Mid-Atlantic Rift (MAR), separating the American plate from the Eurasian and African plates, and the Azores-Gibraltar Fault Zone (AGFZ), bounding the latter two plates. In the Azores area, the MAR trends N-S to N20E and is divided by transform faults into seven short segments (Luis et al., 1994). The western AGFZ segment, in the Azores region, is oblique to the spreading direction allowing magmatic intrusion along faults, feeding the volcanism that built the islands (Lourenço et al., 1998). Tectonic and volcanic activities are well displayed in the geomorphology of the islands.

Several active volcanoes, some of which emerge as islands, are responsible for 27 eruptions since early 15th century (Zbyszewski, 1963; Weston, 1963/64, Queiroz et al, 1995, Madeira and Brum da Silveira, 2003).

Earthquakes reaching magnitude 7 that caused >6,000 deaths and well-developed fault scarps represent neotectonic activity (Madeira and Ribeiro, 1990; Madeira and Brum da Silveira, 2003).

Many features in the Azores may be considered candidates to geosite classification. These include volcanic structures (historical eruption centres and products, hydrothermal fields, calderas, maars, hawaiian/strombolian, surtseyan and plinian cones, trachyte domes and cuesta, pillow lava outcrops, volcanic caves, prismatic jointed outcrops, pyroclastic deposit exposures), tectonic structures (fault scarps, sag ponds), sedimentary deposits (fossiliferous marine deposits of Miocene to Quaternary age, flood deposits, lahars), and littoral features (e.g. littoral platforms of volcanic or landslide origin — fajas). As an example, in the island of Santa Maria one site has recently been classified as a Natural Monument; it comprises fossiliferous limestones dating from the Miocene/Pliocene boundary, overlain by pillow lavas, associated with an ancient limestone quarry and lime-kiln (Cachão et al., 2003).

Some offshore sites are also worth mentioning, such as the Lucky Strike and Menez Gwen submarine hydrothermal fields classified as Deep Sea Marine Protected Areas by the Regional Government, and the D. João de Castro submarine volcano that erupted in 1720 and is presently at a depth of 10 m.

Thus, the Azores may be considered a natural laboratory of international relevance with regard to plate tectonics, active volcanism and neotectonics. The archipelago displays varied and abundant geological features of scientific, educational and socio-cultural interest, both on the islands and at sea.

Final considerations

The present attempt to define a framework with international relevance constitutes the first contribution for the systematisation of the geological heritage knowledge in Portugal. The application of the ProGEO methodology has resulted in the creation of fourteen frameworks, established by consensus among the Portuguese geological community. Following are the three key outcomes of this work:

i) At a national level, the most important geosites are identified, indicating where geoscientific or educational purposes should be prioritised through scientific justification;

ii) At a regional level, conditions have been developed to foster dialogue with Spanish colleagues in order to create Iberian frameworks;

iii) At an international level, it is now possible to integrate Portuguese geosites in the global inventories promoted by IUGS, UNESCO, and ProGEO.

To achieve these results, future work should focus on:

i) Identification, characterisation and quantification of geosites representative of each framework;

ii) Proposal of management plans for selected geosites ensuring their conservation.

Acknowledgements

The authors are grateful to Dr William Wimbledon for his contribution to the manuscript.

References


