Identifying Sources and Assessing Potential Risk of Exposure to Heavy Metals and Hazardous Materials in Mining Areas: The Case Study of Panasqueira Mine (Central Portugal) as an Example

Carla Candeias 1,*, Eduardo Ferreira da Silva 1, Paula F. Ávila 2 and João Paulo Teixeira 3

1 GeoBioTec—Geobiosciences, Geotechnologies e Geoengineering Research Center, Geosciences Department, University of Aveiro, Campus de Santiago, Aveiro 3810-193, Portugal; E-Mail: eafsilva@ua.pt
2 LNEG—National Laboratory of Energy and Geology, Rua da Amieira, Apartado 1089, S. Mamede de Infesta 4466-901, Portugal; E-Mail: paula.avila@lneg.pt
3 Environmental Health Department, National Institute of Health, Rua Alexandre Herculano, 321, Porto 4000-055, Portugal; E-Mail: jpt12@gmail.com

* Author to whom correspondence should be addressed; E-Mail: candeias@ua.pt; Tel.: +351-968-337-915; Fax: +351-234-370-605.

External Editor: Jose A. Centeno

Received: 10 June 2014; in revised form: 15 September 2014 / Accepted: 17 September 2014 / Published: 26 September 2014

Abstract: The Sn-W Panasqueira mine, in activity since the mid-1890s, is one of the most important economic deposits in the world. Arsenopyrite is the main mineral present as well as rejected waste sulphide. The long history is testified by the presence of a huge amount of tailings, which release considerable quantities of heavy metal(loid)s into the environment. This work assesses soil contamination and evaluates the ecological and human health risks due to exposure to hazardous materials. The metal assemblage identified in soil (Ag-As-Bi-Cd-Cu-W-Zn; potentially toxic elements (PTEs)) reflects the influence of the tailings, due to several agents including aerial dispersion. PTEs and pH display a positive correlation confirming that heavy metal mobility is directly related to pH and, therefore, affects their availability. The estimated contamination factor classified 92.6% of soil samples as moderately to ultra-highly polluted. The spatial distribution of the potential ecological risk index classified the topsoil as being of a very high ecological risk, consistent with wind direction. Non-carcinogenic hazard of topsoil, for children (1–6 years),...