X-ray absorption near-edge spectroscopy (XANES) applied to the speciation of tungsten in Panasquiara mine debris

M.O. Figueiredo, T.P. Silva, J.P. Veiga, M.J. Batista & D.P. de Oliviera

a Mineral Resources & Geophysics, Unit, LNEG, Apartado 7586, 2610-999 Amadora, b CENIMAT / IHN, Mat. Sci. Dept., FCT-UNL, 2829-516 Caparica, Portugal

Email of corresponding author: ondina.figueiredo@lneg.pt

Keywords: XANES, W L-edges, mining residues, Panasquiara tungsten mine

Nowadays considered a critical metal for the EU [1], tungsten has unique physical-plus-chemical properties blocking its replacement in relevant specialized industrial applications and turning it an essential commodity and a metal of high strategic importance. Tungsten mining at Panasquiara (Beira-Baixo district) rendered Portugal the main European producer, and an exploitation history of more than a century has produced a huge tonnage of debris (attaining 0.3% WO₃ [2]). In view of EU efforts to implement a sustainable retrieval of critical mineral resources, recovering tungsten from Panasquiara mine tailings is a prime objective.

An X-ray absorption spectroscopy approach using synchrotron radiation was addressed to W in those mine residues in 2013 [3] and obtained results encouraged a deeper study undertaken last June at the ESRF beamline BM 28-A (SpLine) through the experiment ES-128. An extensive X-ray absorption near-edge spectroscopy (XANES) study was performed at W L₂ and L₃-edges by irradiating materials sampled at the tailings deposit of Rio [4] both at the surface and in depth, along with reference minerals and model compounds, all previously characterized by X-ray diffraction (XRD) and fluorescence (XRF) laboratory techniques.

Comments are presented or the implications of the pre-edge absorption effect registered is the W L₁ XANES spectra (characteristic of W⁴⁺ in tetrahedral coordination) and of the white-line observed in W L₃ spectra (split when those ions fill distorted octahedra); these details are further discussed in relation to the crystal structures of tungsten carrier minerals and complement published data [e.g.,5]. Despite having been assayed fifty years ago in surface materials collected at Reboldes and Seladinho dump valleys [6], tungstite (crystalline WO₃·H₂O) could not be clearly identified in the studied Rio samples, indicating that tungsten stays essentially under its original mineral form. Possible impacts of this conclusion are addressed and briefly commented in relation to the arsenic content of those mining debris, having in view a future sustainable recovery of tungsten from the Panasquiara mine tailings.

References

*The authors thank Dr. Paula Avila from LNEG/UCTM for making available the Rio dump samples.