Advances In

PETROLEUM ENGINEERING II

Petrochemical

Editors

K.K. Pant
Professor, Petrotech Chair Professor
Department of Chemical Engineering
Indian Institute of Technology Delhi
Hauz Khas, New Delhi – 110 016, India

Shishir Sinha
Professor of Chemical Engineering
Indian Institute of Technology Roorkee
Roorkee – 247 667, India

Shailendra Bajpai
Department of Chemical Engineering
National Institute of Technology
Jalandhar – 144011, India

Acquisition Editor

J.N. Govil
Former Principal Scientist, Division of Genetics
Indian Agricultural Research Institute
New Delhi – 110 012, India

2015

Studium Press LLC, U.S.A.
Advances In

PETROLEUM ENGINEERING II

Petrochemical

© 2015 Publishers

This book contains information obtained from authentic and highly regarded sources. Reprinted material from authentic sources which are acknowledged and indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the editors and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use.

All rights are reserved under International and Pan-American Copyright Conventions. Apart from any fair dealing for the purpose of private study, research, criticism or review, as permitted under the Copyright Act, 1956, no part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means—electronic, electrical, chemical, mechanical, optical, photocopying, recording or otherwise—without the prior permission of the copyright owner.

(Set 2 Vols.) ISBN : 1-62699-047-6

Published by:

STUDIUM PRESS LLC
P.O. Box 722200, Houston, TX 77072 - U.S.A.
Tel: (281) 776-8950, Fax: (281) 776-8951
E-mail: studiumpress@gmail.com
Website: http://www.studiumpress.in

Printed at Thomson Press (India) Ltd
Integration of Polymeric-base Wastes into Petroleum Refineries

Miguel Miranda¹*, I. Cabrita¹, Nuno Alvarez²
and I. Gulyurtlu³

ABSTRACT

The continuous growth of world population along with increasing needs to improve life quality of societies and their dependence on fuel and other derived petroleum products suggest that the overall energy demand will increase significantly in the future. This chapter focuses the production of liquid fuels by pyrolysis applied to rubber tyre and different plastic wastes as an option for integration in the refining process. The advantage is that pyrolysis of polymeric-base wastes tend to reverse the polymerization process used in the production of polymers at moderate conditions of temperature and pressure. The liquids obtained depend upon the polymeric blend. Product yields could lead to liquids similar to petroleum derived fuels as well as chemical feedstocks suitable to a wide range of industries. Considering that it is innovative the integration of polymeric-base wastes streams in petroleum refineries, a more detailed analysis on issues related to retrofiting will be presented.

Keywords: Pyrolysis, Liquid fuel, Petroleum refining process, Polymeric wastes

INTRODUCTION

At the advent of the new century, world global economy continues to be much dependent on petroleum. Petroleum resources are used to provide fuels for a

¹ National Laboratory of Engineering and Geology, I.P. (LNEG), Portugal
² Abu Dhabi National Oil Company (ADNOC) - UAE
³Corresponding author: E-mail: miguel.miranda@lneg.pt