Avaliação do Potencial e Impacto do Biometano em Portugal

Sumário Executivo

Isabel Cabrita | Luís Silva | Isabel Paula Marques
Santino Di Berardino | Francisco Gírio

Com apoio do
Avaliação do Potencial e Impacto do Biometano em Portugal

Estudo Técnico-Científico
PREÂMBULO

O estudo foi desenvolvido com o apoio financeiro do FAI – Fundo de Apoio à Inovação, reunindo um conjunto de dados e informação específica, contando com contribuições de particulares, empresas e entidades oficiais, sem as quais não teria sido possível determinar o potencial e a avaliação do impacto da introdução de biometano em Portugal.

Os autores agradecem o apoio dos serviços do Laboratório Nacional de Energia e Geologia (LNEG) e dos vários técnicos, investigadores e bolseiros que contribuíram para o desenvolvimento do estudo, nomeadamente: João Bidarra, Ibrahim Gulyurtlu, Michele Miri, Filomena de Jesus Pinto e Luís Duarte, que contribuíram mais diretamente no fornecimento de informação e tratamento de dados.

Agradece-se ainda o apoio da Direção Geral de Energia e Geologia (DGE), da Agência Portuguesa do Ambiente (APA), da Agência para a Energia (ADENE), da REN – Redes Energéticas Nacionais e da ERSE – Entidade Reguladora dos Serviços Energéticos, que disponibilizaram grande parte da informação relevante para o desenvolvimento do estudo, bem como os contributos das seguintes entidades:

SUMÁRIO EXECUTIVO

O PNAER 2020, D.R. 1ª Série Nº 70, de 10 de Abril 2013, identifica políticas e atividades necessárias implementar para garantir o cumprimento do plano nacional relativamente à promoção da utilização das fontes de energia renovável nos diferentes setores. Uma das áreas estratégicas a promover refere-se ao “Biometano”, apresentando como objetivo a avaliação do potencial do biometano em Portugal e suas aplicações alternativas em apoio à definição de regulamentação das especificações necessárias para a sua injeção na rede de gás natural (GN). Com esta avaliação prevê-se possibilitar a utilização de biometano para outros fins para além da produção de eletricidade.

Recentemente publicada, a Diretiva 2014/94/UE do Parlamento Europeu e do Conselho de 22 de Outubro de 2014 estabelece princípios orientadores relativamente à criação de uma infraestrutura para combustíveis alternativos na Europa, a qual promove a existência de postos de abastecimento de combustíveis alternativos para o setor de transportes em que se inclui o biometano. Duas situações poderão ser consideradas: a introdução de biometano na atual rede de distribuição de gás natural (GN); a existência de uma rede local de postos de abastecimento que utilizem biometano produzido localmente ou em locais mais remotos tirando partido da logística de distribuição de gás através de camiões cisterna implementada para o GN.

O Biometano é um gás constituído fundamentalmente por metano (cerca de 85-95%) e pode ser produzido quer através da via de conversão bioquímica (biogás) ou termoquímica (gás de síntese) da biomassa. A forma mais utilizada para sua obtenção é a partir do biogás, através de um processo de purificação e valorização da composição química para enriquecimento em metano com vista a aproximar as suas características às do GN. O biogás (ou o gás de síntese obtido por gasificação) é produzido a partir de biomassa diversa normalmente com base em resíduos de natureza orgânica, de várias proveniências. O biogás é constituído por 45-80 % de metano (CH₄), contendo ainda CO e CO₂ e, em menores quantidades gás sulfídrico, amoníaco e vapor de água. O gás da gasificação apresenta normalmente uma menor quantidade de metano, cerca de 10%, tendo em maior quantidade o hidrogénio (30 – 45%), sendo ainda constituído por CO, CO₂ e outros hidrocarbonetos. O GN de origem fóssil tem uma composição que depende da sua origem, apresentando 85 a 98% de metano na sua composição.

Avaliação do Potencial e Impacto do Biometano em Portugal
A composição de biometano terá, assim, de ser semelhante à do gás natural para possibilitar a sua alimentação à rede de distribuição do GN e bem assim substituir o GN em equipamentos térmicos que utilizam este gás combustível. O valor de Índice de Wobbe do biometano deverá, assim, garantir essa intermutabilidade.

A produção de biogás na Europa é reportada pela EBA (European Biogas Association) em cerca de 14 bilhões m³ em equivalente a gás natural, sendo expectável duplicar este valor em 2020 na sequência da implementação dos Planos Nacionais de Ação para as Energias Renováveis (PNAER's). O biometano é produzido atualmente em mais de 200 instalações de melhoramento de biogás espalhadas por 15 países, sendo que a injeção na rede de gás natural ocorre em apenas 10 deles. Embora a maior utilização seja destinada ao aquecimento e produção de energia elétrica (CHP), a sua utilização como combustível no setor dos transportes tem vindo a crescer. A título de exemplo, tem-se o caso da Suécia em que a utilização de biometano como combustível rodoviário já supera a de GNC, com uma quota de mercado de 57%. Outro exemplo é o da Alemanha que, só em 2012, viu a quota de mercado de biometano no setor dos transportes mais do que duplicar, subindo de 6% para 15%¹. A utilização do biometano está assim a crescer na Europa, existindo já em alguns casos acordos bilaterais entre alguns países (ex. Alemanha-Suíça, Alemanha-Suécia e Alemanha-Holanda) visando o comércio entre eles.

O consumo de gás natural (GN) na Europa situa-se entre os 2 e os 3 bilhões de m³. A Associação de Veículos a GN (NGVA) estima que este valor poderá aumentar para 10-15 bilhões m³ em 2020 (podendo atingir uma quota de mercado de 5% no setor de transportes). Considerando que 3,5 a 5,4% do biogás é purificado e valorizado em 2020 para obter uma qualidade do combustível adequada ao uso em motor de combustão interna, este volume traduzir-se-ia em 10% de parcela renovável no consumo de gás natural (liquefeito/comprimido), ou seja contribuindo com 0,5% no consumo total de energia nos transportes.

A produção de biometano é o resultado do processo de valorização do biogás, que se traduz num processo de limpeza do gás para separação de impurezas (siloxanos, sulfureto de hidrogénio, etc.) e CO₂ com o correspondente enriquecimento em metano. As tecnologias mais utilizadas na Europa atualmente são: limpeza de gases com água (WATS), adsorção com variação de pressão (PSA), lavagem química (CHEMS), lavagem física (PHYS) e separação por membranas (MEMS).

O processo mais usado é o de lavagem com água (WATS) em mais de 40%, seguindo-se os processos de adsorção (PSA) e de lavagem química (CHEMS) que, em conjunto, representam 25% das instalações existentes na Europa. O processo menos utilizado é o de separação recorrendo a membranas que representa apenas 4% das instalações.

Em alternativa, a gaseificação é um processo de conversão termoquímica, que se processa normalmente a temperaturas acima dos 700°C, podendo atingir os 1000°C, em que a biomassa é sujeita a uma sequência complexa de reações, produzindo-se um gás, normalmente designado por “syngas”, ou gás de síntese, constituído principalmente por monóxido de carbono e hidrogénio, contendo ainda metano e dióxido de carbono em quantidades apreciáveis. Esta composição é variável, dependendo de fatores como a tecnologia de gaseificação, o agente de gaseificação e as condições operacionais.

Numa perspetiva de obtenção de biometano, é também necessário o enriquecimento do gás de síntese em metano. Este enriquecimento em metano pode ser efetuado mediante um processo designado por “metanação”, o qual consiste num processo catalítico em que o gás de síntese obtido na gaseificação é convertido em metano. Tal como no biogás, quaisquer impurezas existentes, tais como partículas, compostos com enxofre ou cloro, têm que ser removidas antes da metanação, para minimizar o enfraquecimento da atividade dos catalisadores no processo. A produção de biometano, através das reações de metanação, é reportada entre os 90% e 99% da quantidade de CO e CO₂ presente no gás de síntese. A seletividade e grau de conversão dependem entre outros fatores, da temperatura, do fluxo mássico por exemplo num leito fluidizado e do tipo de catalisador.

Os processos de metanação existentes elevam o conteúdo de metano a um mínimo de 95%, por meio da conversão do monóxido de carbono (CO) e dióxido de carbono (CO₂) em metano por reações químicas com hidrogénio (H₂) na presença de catalisadores usualmente à base de níquel e a uma temperatura na ordem de 250°C a 450°C.

No caso da conversão de biogás em biometano, designadamente em situações de cogeração, mesmo implicando custos acrescidos, permite a utilização integral do potencial energético do combustível, que por vezes é perdida numa percentagem importante quando não se consegue utilizar todo o calor da cogeração. Em alguns países da União Europeia (Alemanha, França, etc.) é obrigatório a utilização integral do calor da cogeração para poder ser elegível às tarifas bonificadas. A produção e utilização de biometano permitem, assim, reduzir o calor disponível da cogeração quando não existem outras alternativas para o uso do calor.

Em Portugal, o biogás produzido provém fundamentalmente de digestores de RSU e de matéria orgânica depositada em aterros e parte dele é aplicado na produção de eletricidade, colocando-se situações em que não é aproveitado o calor disponível. Existem recursos provenientes de vários setores com potencial utilização para sua conversão em biogás recorrendo a várias técnicas (conversão biológicas e termoquímicas) a serem quantificadas em termos de potencial para produção de metano proveniente de atividades diversas em diversos setores (agropecuário, agroindustrial, ETAR’s municipais, resíduos sólidos urbanos) e ainda o potencial proveniente da utilização de resíduos florestais e de outros setores industriais como são exemplos os da pasta e papel, cortiça e outros, tirando partido dos avanços tecnológicos entretanto verificados. Para além destes recursos, poderão ainda ser consideradas alternativas resultantes da produção de biomassa a partir de culturas dedicadas.

A digestão anaeróbia e a gaseificação são processos que se complementam na medida em que, em conjunto, podem ser aplicados à conversão de grande parte dos efluentes produzidos pelas atuais sociedades, em produtos de utilidade. Enquanto a digestão anaeróbia é adequada à degradação de efluentes orgânicos líquidos, a gaseificação aplica-se aos materiais lenhificados de baixo teor em humidade que normalmente são de difícil e longa decomposição por via biológica. No presente estudo, foram estimadas as quantidades geradas em efluentes e resíduos orgânicos apropriados a cada um dos processos recorrendo à informação disponível para cada um dos setores de produção.

O volume total anual estimado de gás combustível (biogás + gás de síntese sem recurso a processos de metanação) possível de obter a partir da biomassa é cerca de 900 milhões Nm³, a que corresponde cerca de 9722 GWh/ano (836 ktep/ano), valor este que quase duplica ao introduzir a metanação no processo de gaseificação, atingindo-se uma produção da ordem dos 1700 milhões Nm³ por ano, a que correspondem 18752 GWh/ano (1612 ktep/ano). A produção de biogás está largamente implantada na Europa, sendo de momento a primeira etapa de
produção de biometano, sendo que outras vias de gaseificação e/ou electrólise com metanação que atualmente estão em desenvolvimento ou demonstração, esperando-se uma maior penetração a médio e longo prazo. Têm sido efetuados estudos na Europa para quantificação do potencial de produção de biogás no horizonte 2020. O valor estimado para a UE-27 é de 41,6 milhões tep, produzido a partir de diferentes tipos de feedstock, designadamente: resíduos da agricultura, bioresíduos diversos, esgotos, aterros e resíduos industriais⁴.

A tabela seguinte apresenta sumariamente o potencial de produção de biometano em Portugal, em que no caso do biogás se recorre a processos de valorização comercialmente disponíveis e difundidos na Europa e, no caso do gás de síntese terá de ser sujeito a processos de metanação.

<table>
<thead>
<tr>
<th>Matéria Orgânica</th>
<th>Produção (M Nm³/ano)</th>
<th>Potencial Energético (ktep/ano)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Biogás</td>
<td>Bio-SNG</td>
</tr>
<tr>
<td>Resíduos Sólidos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urbanos</td>
<td>411,6</td>
<td>4482</td>
</tr>
<tr>
<td>Efluentes domésticos</td>
<td>42,7</td>
<td>465</td>
</tr>
<tr>
<td>Agropecuária</td>
<td>257,8</td>
<td>2807</td>
</tr>
<tr>
<td>Ind. Alimentar</td>
<td>93,0</td>
<td>1013</td>
</tr>
<tr>
<td>Madeiras</td>
<td>865,5</td>
<td>9425</td>
</tr>
<tr>
<td>Papel/ cartão</td>
<td>13,6</td>
<td>148</td>
</tr>
<tr>
<td>Tecidos vegetais</td>
<td>37,8</td>
<td>412</td>
</tr>
<tr>
<td>Total</td>
<td>805,1</td>
<td>916,9</td>
</tr>
</tbody>
</table>

Complementarmente à utilização de resíduos para produção de gás combustível existe a opção das culturas energéticas secundárias desde que não provoquem ILUC ("indirect land use change"). De acordo com dados experimentais obtidos em laboratório pelo LNEG, o cultivo de culturas herbáceas de rotação intercaladas em solos primariamente usados para cereais (ex. milho, trigo) pode aumentar o potencial de produção de biometano em Portugal. A tabela seguinte apresenta a estimativa da potentialidade das culturas herbáceas intercalares na produção de biogás em Portugal com base em estudos efetuados pelo LNEG⁵.

⁴ AEBIOM 2009 "A Biogas Road Map for Europe". European Biomass Association.
<table>
<thead>
<tr>
<th>Uso principal do terreno</th>
<th>Área (ha)</th>
<th>CH₄ produtível (Nm³/dia)</th>
<th>Potencial Energético GWh/dia</th>
<th>ktep/dia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milho</td>
<td>161.325</td>
<td>806.625</td>
<td>8,9</td>
<td>0,765</td>
</tr>
<tr>
<td>Trigo</td>
<td>213.363</td>
<td>1.066.815</td>
<td>11,7</td>
<td>1,006</td>
</tr>
<tr>
<td>Inculto</td>
<td>136.409</td>
<td>682.045</td>
<td>7,5</td>
<td>0,645</td>
</tr>
<tr>
<td>Total</td>
<td>511.097</td>
<td>2.555.485</td>
<td>28,1</td>
<td>2,41</td>
</tr>
</tbody>
</table>

O potencial de utilização do biometano para usos finais que não a produção de eletricidade em Portugal pode ser significativo, dada a procura crescente de gás natural que se tem vindo a verificar, como se comprova através da Figura abaixo⁶. Esta situação perspetiva uma forte oportunidade de produção endógena de biometano para substituição do gás natural nas suas várias aplicações.

O biometano pode ser inserido na rede de gás natural, podendo ser sucessivamente utilizado em aplicações de vários setores de atividade económica. No caso da Alemanha, o biometano é ainda disponibilizado numa base virtual em estações existentes de abastecimento de veículos⁷. Nas zonas não servidas pela rede de gás natural, o biometano pode abastecer a rede de estações existentes, como combustível de substituição.

⁷ BIOMETHANE Fachagentur Nachwachsende Rohstoffe e. V. (2014) (FNR) www.fnr.de
biometano como combustível renovável alternativo para outros fins para além da produção de eletricidade. A Lei Nº 13/2013, de 31 de Janeiro, estabelece o quadro legal de utilização de GPL e GN (sob a forma de GNC ou GNL) em veículos, criando assim condições para o fomento da sua utilização. De acordo com alguns estudos efetuados é projetado um crescimento do número de veículos a circular em Portugal da ordem dos 250 mil⁶, cuja procura, ao nível de gás natural e/ou biometano ou ainda de GPL, dependerá das condições de oferta e de acessibilidade dos combustíveis.

Analisando o potencial, tendo como base as tecnologias e instalações de produção de biogás em Portugal, existentes e potenciais, as alternativas identificadas neste estudo, como técnico-economicamente mais promissor, são os aterros em fase de fecho, ou já selados sem valorização ou aproveitamento do biogás. A produção de biometano a partir de unidades de digestão de RSU pode ser considerada nas instalações existentes em que a produção venha a exceder a capacidade de utilização dos motores geradores existentes ou em novas instalações. Perspetivas futuras a considerar poderão eventualmente surgir a partir de instalações de co-digestão com base em culturas agrícolas secundárias ou outros resíduos herbáceos disponíveis (ex. relvas).

Atualmente, os aterros de maior porte que produzem quantidades elevadas de biogás e os digestores de lamas e RSU são dotados de sistema de cogeração. Existe, no entanto, alguma disponibilidade em aterros com produção menos relevante. Por outro lado, os aterros que estão a ser concluídos e fechados, constituem uma oportunidade para o biometano. Os digestores que tratam resíduos, lamas e efluentes da agro-pecuária necessitam de aquecimento, pelo que a cogeração nestes casos tem vantagens uma vez que gera calor e eletricidade. Desta forma, é possível aquecer o sistema e a produção do biometano deve ser considerada em paralelo à produção de eletricidade.

Um aspeto importante é o custo de produção do biometano que deverá ser competitivo quando comparado com o gás natural, quando se considera como uma alternativa. O custo de produção de biometano depende do tipo de tecnologia usada para a purificação e valorização do gás e sua dimensão. A parcela mais elevada do custo total de uma instalação de biometano refere-se ao custo de investimento que, incluindo a compressão e injeção na rede, pode

representar mais de 60% do seu custo total. Os custos de exploração das tecnologias de produção de biometano são inversamente proporcionais ao aumento de escala e os maiores custos operacionais unitários são gerados quando a produção de biometano é menor. O custo final do biometano dependerá também do seu destino final, e na situação de injeção na rede há que considerar os custos de compressão e a própria injeção. Nesta situação, e de acordo com estudos efetuados na Europa, projeta-se um valor de cerca de 46€/MWh para um tempo de vida útil da instalação de 20 anos. Para ser competitivo com o gás natural, este valor deveria ser cerca de metade, o que se verifica à saída da instalação de conversão de biogás em biometano. A tabela seguinte apresenta os custos de purificação do biogás com base em dois valores de capacidade de tratamento.

<table>
<thead>
<tr>
<th>Capacidade da instalação</th>
<th>250 Nm³/h</th>
<th>1000 Nm³/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Custo do Investimento</td>
<td>0,5-0,8 M€</td>
<td>1,5-1,8 M€</td>
</tr>
<tr>
<td>Custo de exploração</td>
<td>13-17 €/MWh</td>
<td>7-13 €/MWh</td>
</tr>
</tbody>
</table>

Os desafios que se colocam são vários, nomeadamente no que se refere à implementação dum sistema de registos a nível nacional, a cooperação necessária entre diferentes organismos que sugere um planeamento integrado de várias áreas como a agricultura, florestas, ambiente, energia e ainda o desenvolvimento industrial e a I&D, a cooperação entre países, em particular os transfronteiriços, bem como o ir ao encontro das metas definidas para os balanços mássicos evitando duplicação de contagens, a definição e controlo de requisitos de sustentabilidade e certificação e, finalmente, definir o estímulo adequado que garanta a produtividade desejada com o desenvolvimento sustentável da indústria e da economia neste sector.

Um dos domínios essenciais refere-se à área da regulamentação, em que diferentes países definem especificações para a qualidade do gás e características técnicas para a injeção na

11 (a) Ryszard Wnuk, Bartłomiej Asztemborski (2014). "Roadmap for Biomethane Market Development in Poland";

rede de gás natural. Contudo, estas especificações são, na maioria dos casos genéricas e definidas para todos os gases “não convencionais”, sendo o biometano, quer produzido a partir de processos de gaseificação quer de digestão anaeróbia, incluído neste grupo de gases. Acresce ainda o facto de existirem diferenças no que respeita às várias especificações, nomeadamente no que se refere à composição e concentração de alguns parâmetros que não o metano.

No que se refere às características de injeção, a comissão técnica de normalização do Comité Europeu (CEN – TC 408) identifica o diagrama que se apresenta a seguir para as aplicações do biometano.

A tabela seguinte apresenta as composições típicas de diferentes gases obtidos de fontes não convencionais (NCS), tendo como termo de comparação o gás natural\(^\text{12}\).

\(^\text{12}\) CEN TC/234 (2011): “Gases from non-conventional sources — Injection into natural gas grids — Requirements and recommendations”.

Avaliação do Potencial e Impacto do Biometano em Portugal
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Digestão Anaeróbica</td>
<td>Aterros</td>
<td>Com O₂</td>
<td>Com Ar</td>
</tr>
<tr>
<td>Metano</td>
<td>% molar</td>
<td>88,8 (86,6-88,8)</td>
<td>65,0 (50-80)</td>
<td>45,0 (30-60)</td>
<td>15,6</td>
</tr>
<tr>
<td>Carbonos CZ⁺</td>
<td></td>
<td>8,3 (8,3-8,5)</td>
<td>5,8</td>
<td>(0-2)</td>
<td>1,5</td>
</tr>
<tr>
<td>Hidrogénio</td>
<td></td>
<td>-</td>
<td>-</td>
<td>1,5 (0-2)</td>
<td>22,0 (20-30)</td>
</tr>
<tr>
<td>Monóxido de carbono</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>44,4 (40-50)</td>
</tr>
<tr>
<td>Dióxido de carbono</td>
<td>mg/m³</td>
<td>2,3 (1,9-2,3)</td>
<td>35,0 (15-50)</td>
<td>40,0 (15-40)</td>
<td>12,2 (15-30)</td>
</tr>
<tr>
<td>Azoto</td>
<td></td>
<td>1,1 (0,9-1,1)</td>
<td>0,2 (0-5)</td>
<td>15,0 (0-50)</td>
<td>(3-7)</td>
</tr>
<tr>
<td>Oxigénio</td>
<td></td>
<td><0,01 (0-1)</td>
<td>1,0 (0-10)</td>
<td>(0-5)</td>
<td>(0-5)</td>
</tr>
<tr>
<td>Sulfeto de Hidrogénio</td>
<td></td>
<td>1,5 (0-5)</td>
<td><600 (100-100000)</td>
<td><100 (0-1000)</td>
<td>-</td>
</tr>
<tr>
<td>Amonia</td>
<td></td>
<td>-</td>
<td>100 (0-100)</td>
<td>5 (0-5)</td>
<td>-</td>
</tr>
<tr>
<td>BTX</td>
<td>mg/m³</td>
<td>0-1750</td>
<td>0-20 (0-100)</td>
<td>0-500 (0-800)</td>
<td>1000-10000</td>
</tr>
<tr>
<td>Cloro total</td>
<td></td>
<td>-</td>
<td>-</td>
<td>0,5 (0-100)</td>
<td>10 (0-800)</td>
</tr>
<tr>
<td>Flúor total</td>
<td>mg/m³</td>
<td>-</td>
<td>0-50 (0-100)</td>
<td>0-500 (0-800)</td>
<td>-</td>
</tr>
<tr>
<td>Siloxanos</td>
<td></td>
<td>-</td>
<td>0-50 (0-100)</td>
<td>0-500 (0-800)</td>
<td>-</td>
</tr>
<tr>
<td>Alcalatrões</td>
<td>mg/m³</td>
<td>-</td>
<td>-</td>
<td>0,5</td>
<td>0,01-100</td>
</tr>
</tbody>
</table>

Nota 1: as composições são puramente indicativas, obtidas a partir de diferentes fontes. Os valores entre parêntesis indicam as gamas que podem ser encontradas, dependendo da matéria-prima utilizada no processo.
Nota 2: Para a gaseificação da biomassa, estão disponíveis diferentes metodologias com diferenças significativas na composição dos gases produzidos.

Ao nível dos países europeus que procedem à injeção de biometano na rede de gás, verifica-se que, para a maioria dos parâmetros as especificações apresentam alguma semelhança de valores (ex. dióxido de carbono, sulfeto de hidrogênio, água e calor específico). As diferenças prendem-se, essencialmente, com as características do gás natural na rede em cada um dos países e com a natureza dos substratos utilizados na produção do biometano.
A tabela seguinte apresenta, para países europeus que possuem regulação para das características do biometano a ser injetado na rede, uma compilação quanto aos valores estipulados para diversos parâmetros.

<table>
<thead>
<tr>
<th>Constituinte</th>
<th>Unidade</th>
<th>Áustria</th>
<th>França</th>
<th>Bélgica</th>
<th>Rep. Checa</th>
<th>Alemanha</th>
<th>Holanda</th>
<th>Suécia</th>
<th>Suíça</th>
<th>Espanha</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₄</td>
<td>%</td>
<td>≥ 96</td>
<td>≥ 86</td>
<td>≥ 85</td>
<td>≥ 95</td>
<td>≥ 85</td>
<td>≥ 97</td>
<td>≥ 96</td>
<td>≥ 95</td>
<td></td>
</tr>
<tr>
<td>CO₂</td>
<td>%</td>
<td>≤ 3</td>
<td>≤ 2,5</td>
<td>≤ 2,5</td>
<td>≤ 5</td>
<td>≤ 6 (seco)</td>
<td>≤ 6</td>
<td>≤ 3</td>
<td>≤ 6</td>
<td>≤ 2,5</td>
</tr>
<tr>
<td>O₂</td>
<td>(vol/mol)</td>
<td>≤ 0,5</td>
<td>≤ 0,01</td>
<td>≤ 0,5</td>
<td>≤ 0,5 (húmido), 3 (seco)</td>
<td>≤ 0,5</td>
<td>≤ 1</td>
<td>≤ 0,5</td>
<td>≤ 0,01</td>
<td></td>
</tr>
<tr>
<td>H₂</td>
<td>≤ 4</td>
<td>≤ 6</td>
<td>≤ 0,1</td>
<td>≤ 5</td>
<td>≤ 12x</td>
<td>≤ 0,5</td>
<td>≤ 4</td>
<td>≤ 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>≤ 2</td>
<td>≤ 0,2</td>
<td>≤ 1</td>
<td>≤ 1</td>
<td>≤ 2</td>
<td>≤ 15</td>
<td>≤ 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S total</td>
<td>mg/Nm³</td>
<td>≤ 10</td>
<td>≤ 30</td>
<td>≤ 30</td>
<td>≤ 30</td>
<td>≤ 45x</td>
<td>≤ 23</td>
<td>≤ 30</td>
<td>≤ 50</td>
<td></td>
</tr>
<tr>
<td>H₂S (+COS em Fr, Be e Es)</td>
<td>≤ 5</td>
<td>≤ 5</td>
<td>≤ 7</td>
<td>≤ 5</td>
<td>≤ 10</td>
<td>≤ 10</td>
<td>≤ 5</td>
<td>≤ 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercaptanos</td>
<td>≤ 6</td>
<td>≤ 6</td>
<td>≤ 6</td>
<td>≤ 6</td>
<td>≤ 15</td>
<td>≤ 10x</td>
<td>≤ 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compostos halogenados</td>
<td>≤ 0</td>
<td>≤ 1 (Cl)</td>
<td>≤ 10 (F)</td>
<td>≤ 1 (Cl)</td>
<td>≤ 10 (F)</td>
<td>≤ 5</td>
<td>≤ 50/25</td>
<td>≤ 1</td>
<td>≤ 10 (Cl)</td>
<td></td>
</tr>
<tr>
<td>Metais pesados</td>
<td>≤ 1 (µg Hg)</td>
<td></td>
</tr>
<tr>
<td>Siloxanos</td>
<td>≤ 10</td>
<td>≤ 6 (Si)</td>
<td>≤ 5</td>
<td>≤ 5</td>
<td>≤ 5</td>
<td>≤ 5 ppHM</td>
<td>≤ 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amônia</td>
<td>Isento</td>
<td>≤ 3</td>
<td>≤ 3</td>
<td>Isento</td>
<td>≤ 3</td>
<td>≤ 20</td>
<td>≤ 20</td>
<td>≤ 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂O</td>
<td>≤ 110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ponto de orvalho da água</td>
<td>9°C</td>
<td>≤ 8 (40 bar)</td>
<td>≤ 5 (Pmin)</td>
<td>≤ 10</td>
<td>Temp. do solo</td>
<td>≤ 10 a 70 bar* (8 bar)</td>
<td>≤ 60 -5</td>
<td>Prevenir condens.</td>
<td>≤ 2 (70 bar)</td>
<td></td>
</tr>
<tr>
<td>Odorizante</td>
<td></td>
</tr>
<tr>
<td>BTX</td>
<td>mg/Nm³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Proposta de decreto-lei na Holanda para a regulamentação da composição de gás natural na rede

A possibilidade de injeção de biometano na rede de gás natural está a ser contemplada na legislação nacional. O Decreto-Lei nº 231/2012 de 26 de outubro, veio estabelecer que as disposições relativas ao acesso à RNTGN, bem como as relativas à comercialização do GN são aplicáveis ao biogás e ao gás proveniente da biomassa, ou a outros tipos de gás, viabilizando a
injeção destes nas redes de gás natural, uma vez garantidas as condições técnicas de qualidade e segurança para a injeção destes gases.

O estabelecimento de especificações para os gases não convencionais que possam vir a ser introduzidos na rede de gás natural, como é o caso do biometano, deverá ter em conta, para além do respeitante às características do gás natural atualmente em distribuição o facto de constituir uma mais-valia a abordagem a uma lógica de escala, facilitando o desenvolvimento deste mercado.

Nesse sentido, as especificações nacionais deverão ter em conta os mais recentes desenvolvimentos do comité técnico do CEN que tem vindo a trabalhar com vista a uma harmonização europeia do biometano, sem esquecer a necessidade de compatibilidade com as características do GN no caso de injeção na rede, devendo-se garantir no caso do biometano valores de Índice de Wobbe idênticos ao do gás natural, evitando intervenções a nível dos equipamentos de queima.

Para além das questões relacionadas com a regulamentação técnica, o desenvolvimento do setor do GN/biometano poderá ser incrementado para usos finais diferentes da produção de electricidade através da criação mecanismos de incentivo como os que foram implementados em países como a Suécia, o Reino Unido, a Itália, a Holanda ou a Alemanha. Para além disso, a aposta na investigação e no desenvolvimento na área das fontes endógenas de biomassa em Portugal, nomeadamente nos processos tecnológicos de produção de metano de acordo com as fontes de biomassa disponíveis poderão vir a reforçar a competência nacional nesta matéria e contribuir para diminuir os investimentos, que se esperam elevados sobretudo em sistemas de digestão anaeróbia, sistemas de “upgrading” ou mesmo em tecnologias de gasificação. Instrumentos de apoio ao financiamento destas unidades poderão ser um estímulo ao desenvolvimento do setor, sendo importante que os requisitos legais promovam a cooperação entre os intervenientes no processo.

Relativamente aos incentivos à utilização veicular do gás natural/biometano, a publicação da Lei nº 13/2013 que veio estabelecer o regime jurídico da utilização do GPL e do GN em veículos, e a mais recente legislação da «fiscalidade verde»¹³, já vieram contribuir para a implementação de medidas que tenderão a fomentar o desenvolvimento do setor. Esta última,

¹³ Lei nº 82-D/2014, de 31 de Dezembro que “Procede à alteração das normas fiscais ambientais nos sectores da energia e emissões, transportes, água, resíduos, ordenamento do território, florestas e biodiversidade, introduzindo ainda um regime de tributação dos sacos de plástico e um regime de incentivo ao abate de veículos em fim de vida, no quadro de uma reforma da fiscalidade ambiental”.

Avaliação do Potencial e Impacto do Biometano em Portugal
veio estabelecer algumas medidas que vão no sentido da promoção da utilização do GN/biometano em veículos.

Estando identificados os recursos e o potencial para produção de biometano em Portugal, face a um enquadramento legislativo e regulamentar adequado, é possível implementar um plano global para promoção da produção e utilização de biometano para vários fins outros que não apenas eletricidade, colocando-se várias opções que deveriam ser testadas tanto a nível técnico como económico. O presente estudo abordou três opções:

i. Produção descentralizada de biometano associada a cada unidade produtora de biogás, com possível implementação a curto prazo;

ii. Constituição de clusters de operadores de produção de biogás, implementando uma unidade de conversão para biometano para servir o conjunto de operadores, para encarar a médio prazo; e,

iii. Construção de uma central recetora de matérias-primas com produção centralizada de biogás e sua conversão em biometano, o que se estima poder ser planeado para implementação a médio ou longo prazo.

Em termos de disponibilização do biometano, foram consideradas três alternativas: (i) injeção na rede de gás natural, (ii) injeção em unidades autônomas e (iii) biometano liquefeito destinado ao sector de transportes na generalidade, por exemplo para fornecimento em postos de abastecimento como combustível veicular (bio-GNL) ou comprimido (bio-GNC), e diretamente fornecido a clientes finais.

Face aos desafios que se colocam no sentido de garantir o sucesso da implementação de projetos inovadores e reforçar a competitividade nacional, é necessário identificar ações em várias áreas de atuação. A figura seguinte ilustra um possível planeamento de ações a desenvolver no âmbito de um Roteiro Nacional do Biometano.
Implementação de projectos industriais de gaseificação de biomassa
Incentivos à logística nacional de UGA para bio-LNG e bio-CNG
Avaliação do impacto das medidas (base anual, a iniciar em 2016) e quantificação da redução total das emissões de gases com efeito de estufa

Implementação de registos nacionais de biometano
Adaptação das normas Europeias para Np's
Monitorização e cumprimento dos critérios de sustentabilidade das diferentes cadeias de valor do biomeano no setor transportador
Promoção de culturas energéticas secundárias de baixo ILUC
Financiamento público para I&D em novas tecnologias
Promoção de projectos inovadores em gaseificação de biomassa para biometano

Identificação do potencial nacional em biometano
Regulamentação das especificações do biometano em Portugal
Definição das condições técnicas de injeção na rede
Acompanhamento dos trabalhos do CEN para elaboração da EN
Promoção de projectos inovadores
Legislação de apoio à introdução do biometano

Avaliação do Potencial e Impacto do Biometano em Portugal
Ficha Técnica

Avaliação do Potencial e Impacto do Biometano em Portugal
Sumário Executivo

EDIÇÃO
LNEG

DESIGN
Isabel Paula Marquês
Renata Farinha

Com apoio de: