Repositório do LNEG
National Laboratory of Energy and Geology Scientific Repository
Recent Submissions
Evolution of atomically dispersed co-catalysts during solar or UV photocatalysis for efficient and sustained H2 production
Publication . Capelo, Anabela; Fattoruso, Domenico; Valencia-Valero, Laura; Esteves, M. Alexandra; Rangel, Carmen M.; Puga, Alberto
ABSTRACT: The evolution of metal/titania photocatalysts during photocatalytic H-2 evolution is herein studied. Samples containing atomically dispersed Pt co-catalysts (single atoms, clusters and sub-nanoparticles) formed after calcination were compared to pre-reduced analogues mostly having metallic nanoparticles (diameters >1 nm) during ethanol photoreforming under either UV-rich irradiation or natural sunlight. Aggregation of ultra-dispersed oxidised platinum entities (Pt delta+) with concomitant reduction into Pt-0 nanoparticles (1-2 nm) was observed after UV irradiation by transmission electron microscopy (TEM), and diffuse reflectance UV-visible (DRUV-vis) and X-ray photoelectron (XPS) spectroscopies. A parallel, albeit slower, evolution trend was evidenced during solar photocatalysis. Conversely, atomically dispersed Cu co-catalyst species did not grow and became in-situ reduced into sub-nanometric Cu-0 under irradiation. Hydrogen production rates were remarkably high during initial stages of UV irradiation, and then declined to a sustained regime (approximate to 50 and 8 mmol g(-1) h(-1) for Pt/TiO2 or Cu/TiO2, respectively, for up to 24 h of irradiation). Steadier solar photoreforming was observed in experiments performed in a compound parabolic collector tubular reactor (approximate to 7.6 and 1.7 mmol g(-1) h(-1) for Pt/TiO2 or Cu/TiO2, respectively). Despite the non-negligible effect of co-catalyst rearrangement on activity rationalised herein, attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy measurements pre- and post-photocatalysis suggest that accumulation of strongly adsorbed degradation intermediates, chiefly acetate, is a major cause for rate decreases. Notwithstanding, this phenomenon did not result in total deactivation, so that sustained hydrogen production upon long-term irradiation was not compromised.
Hybrid Variable Renewable Power Plants: A Case Study of ROR Hydro Arbitrage
Publication . Catarino, Isabel; Romão, Inês; Estanqueiro, Ana
ABSTRACT: Wind and solar energy sources, while sustainable, are inherently variable in their power generation, posing challenges to grid stability due to their non-dispatchable nature. To address this issue, this study explores the synergistic optimization of wind and solar photovoltaic resources to mitigate power output variability, reducing the strain on local grids and lessening the reliance on balancing power in high-penetration renewable energy systems. This critical role of providing stability can be effectively fulfilled by run-of-river hydropower plants, which can complement fluctuations without compromising their standard operational capabilities. In this research, we employ a straightforward energy balance model to analyze the feasibility of a 100 MW virtual hybrid power plant, focusing on the northern region of Portugal as a case study. Leveraging actual consumption and conceptual production data, our investigation identifies a specific run-of-river plant that aligns with the proposed strategy, demonstrating the practical applicability of this approach.
Clean production of microalgae high-value lipid fraction: Influence of different pretreatments on chemical and cytotoxic profiles of Chlorella vulgaris supercritical extracts and life cycle assessment
Publication . Vladic, Jelena; Radman, Sanja; Jerkovic, Igor; Besu, Irina; Speranza, Lais Galileu; Hala, Ahmad Furqan; Kovacevic, Strahinja; Perreira, Hugo; Gouveia, Luisa
ABSTRACT: Microalgae have emerged as a promising natural resource rich in bioactive compounds. Health-beneficial properties of microalgae, coupled with advantageous characteristics such as high biomass productivity, adaptability, robustness, and carbon dioxide mitigation, position them as a viable solution for global sustainable food production. This study explored clean and environmentally friendly processes to enhance the recovery of lipid bioactive fractions. Microwave (MW), enzymatic (ENZ), and ultrasound (US) pretreatments were applied to improve environmentally friendly extraction of lipid-based components using supercritical CO2. The effects of these pretreatments on extraction yield, chemical profiles, and cytotoxic properties of Chlorella vulgaris (Cv) and smooth C. vulgaris (sCv) extracts were investigated. Additionally, a Life Cycle Assessment (LCA) was conducted to evaluate environmental impacts. MW pretreatment achieved the highest yield increases, from 2.58 times (Cv) to 3.15 times (sCv). UHPLC-ESI-HRMS analysis revealed shifts in the distribution of pigments and derivatives caused by pretreatments, with ENZ extracts showing the most pronounced changes: pigments increased from 9.24% (control Cv) to 40.92% (Cv) and from 12.52% (control sCv) to 71.12% (sCv). Cv extracts exhibited greater activity against MDA-MB-453 cells, while sCv extracts from US pretreatment demonstrated the strongest effect on HeLa cells. The LCA indicated reduced environmental impacts of the pretreatment-enhanced processes up to 65% compared to the control. A scenario analysis was presented to show further possible impact reduction by recirculating the CO2 solvent and substituting the energy source. These findings provide valuable insights into sustainable and scalable green processes for recovering microalgal bioactive components.
The old central igneous complexes of Sal, Boa Vista and Maio islands: Implications for 17 Ma of isotopic evolution of the Cape Verde archipelago
Publication . Villaseca, Carlos; Orejana, David; Huertas, Maria J.; Ancochea, Eumenio; Ignacio, Cristina; Mata, João; Caldeira, Rita; Garcia-Rodriguez, Maria; Moreno, Juan A.; Perez-Soba, Cecilia
ABSTRACT: The central igneous complexes of the easternmost islands (Sal, Boa Vista and Maio) preserve some of the most ancient outcropping rocks of the Cape Verde (CV) archipelago. These Early to Middle Miocene (about 25 to 12 Ma) complexes show marked isotopic differences between mafic rocks from the northern (Sal and Boa Vista) and the southern Maio Island, the latter showing lower 143Nd/144Nd, 206Pb/204Pb, 207Pb/204Pb, and higher 87Sr/86Sr ratios. The main mantle plume composition beneath Cape Verde is here considered to be dominated by the FOZO component. Our data supports previous models suggesting the incorporation to plume components of minor DMM mantle sources in the northern CV island alignment, whereas mixing with the EM1 pole is prevalent on the southern CV islands. These isotopic differences are evident since the early stages of Cape Verde magmatism. The Late Miocene to Holocene time period (7 to 1.7 Ma) is characterized by the irruption of silica-undersaturated and carbonatite magmas with a relatively homogeneous isotopic composition and highly radiogenic Pb signatures (206Pb/204Pb up to 20.6 in carbonatitic rocks and 20.2 in silicate rocks) throughout most of the Cape Verde archipelago. During this transitional stage, the input of this new HIMU mantle component overprinted the previous mixing of the main FOZO plume component with shallow mantle members (DMM, EM1) of minor contribution.
Copernicus Services and Geohazards Management: Lessons Learnt from Citizens’ Observatories
Publication . Montoya-Montes, Isabel; Quental, Lídia; Galindo, Inés; Holohan, Eoghan; Jaud, Marion; Parker, Kieran; Sanchez, Nieves; García Moreno, Inmaculada; Le Dantec, Nicolas; Lemon, Kirstin; Ramalho, Elsa; Machado, Susana; Le Berre, Iwan; Gouveia, Fátima; Pinto, Claúdia; Béjar Pizarro, Marta; Herrera, Gerardo; Gomes, Rui Carrilho; Rodrigues, Domingos; Gonçalves, Pedro
ABSTRACT: With the AGEO Project focused on the assessment and management of geohazards, particular attention was paid to Copernicus EMS, as it supports all phases of the emergency management cycle: preparedness, prevention, disaster risk reduction, emergency response and recovery. The uptake of the Copernicus EMS in the EU Atlantic Region from 2012–2022 is reviewed. Surveys undertaken during the AGEO project highlighting the perception and awareness of stakeholders, as well as their suggestions for improvements or new requirements, are summarised. Uptake of Copernicus and Earth Observation (EO) products in the frame of the citizen observatories on geohazards is also addressed. Finally, strategic recommendations for strengthening the use of Copernicus products and services, and for new Copernicus products for the Atlantic Region are given.