Browsing by Author "Andreaus, Jurgen"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Current pretreatment technologies for the development of cellulosic ethanol and biorefineriesPublication . Silveira, Marcos H. Luciano; Morais, Ana Rita C.; Lopes, André; Olekszyszen, Drielly Nayara; Lukasik, Rafal M.; Andreaus, Jurgen; Ramos, Luiz PereiraLignocellulosic materials, such as forest, agriculture, and agroindustrial residues, are among the most important resources for biorefineries to provide fuels, chemicals, and materials in such a way to substitute for, at least in part, the role of petrochemistry in modern society. Most of these sustainable biorefinery products can be produced from plant polysaccharides (glucans, hemicelluloses, starch, and pectic materials) and lignin. In this scenario, cellulosic ethanol has been considered for decades as one of the most promising alternatives to mitigate fossil fuel dependence and carbon dioxide accumulation in the atmosphere. However, a pretreatment method is required to overcome the physical and chemical barriers that exist in the lignin–carbohydrate composite and to render most, if not all, of the plant cell wall components easily available for conversion into valuable products, including the fuel ethanol. Hence, pretreatment is a key step for an economically viable biorefinery. Successful pretreatment method must lead to partial or total separation of the lignocellulosic components, increasing the accessibility of holocellulose to enzymatic hydrolysis with the least inhibitory compounds being released for subsequent steps of enzymatic hydrolysis and fermentation. Each pretreatment technology has a different specificity against both carbohydrates and lignin and may or may not be efficient for different types of biomasses. Furthermore, it is also desirable to develop pretreatment methods with chemicals that are greener and effluent streams that have a lower impact on the environment. This paper provides an overview of the most important pretreatment methods available, including those that are based on the use of green solvents (supercritical fluids and ionic liquids).
- Pre-treatment of lignocellulosic biomass using ionic liquids: wheat straw fractionationPublication . Lopes, André; João, Karen; Rubik, Djonatam; Bogel-Lukasik, Ewa; Duarte, Luís C.; Andreaus, Jurgen; Lukasik, Rafal M.This work is devoted to study pre-treatment methodologies of wheat straw with 1-ethyl-3-methylimidazolium acetate ([emim][CH3COO]) and subsequent fractionation to cellulose, hemicellulose and lignin. The method developed and described here allows the separation into high purity carbohydrate and lignin fractions and permits an efficient IL recovery. A versatility of the established method was confirmed by the IL reuse. The fractionation of completely dissolved biomass led to cellulose-rich and hemicellulose-rich fractions. A high purity lignin was also achieved. To verify the potential further applicability of the obtained carbohydrate-rich fractions, and to evaluate the pre-treatment efficiency, the cellulose fraction resulting from the treatment with [emim][CH3COO] was subjected to enzymatic hydrolysis. Results showed a very high digestibility of the cellulose samples and confirmed a high glucose yield for the optimized pre-treatment methodology.
- Pretreatment of cotton spinning residues for optimal enzymatic hydrolysis: a case study using green solventsPublication . Fockink, Douglas, H.; Andreaus, Jurgen; Ramos, Luiz Pereira; Lukasik, Rafal M.ABSTRACT: The effectiveness of imidazole and ionic liquid pretreatments for the conversion of cotton spinning residues (dirty cotton residue - DCR and cotton filter powder - CFP) into soluble sugars was investigated. DCR was pretreated with imidazole using temperatures and reaction times that were arranged in a 2(2) factorial design and pretreatment performance was evaluated by enzymatic hydrolysis. High glucan to glucose and xylan to xylose yields (78.0 and 94.9 mol %) were obtained from the solids produced at 140 degrees C and 2h (center point), which provided delignification levels of 45.5% (w.v(-1)). The same pretreatment condition was applied to CFP yielding only 16.0% (w.v(-1)) of delignification, but 75.8 mol % of glucan and 95.7 mol % of xylan were converted as their corresponding monomeric sugars after enzymatic hydrolysis. Both pretreated materials were subjected to a central composite design to find the best enzymatic hydrolysis conditions regarding substrate total solids (TS) and enzyme loading. More than 40 g.L-1 glucose was obtained from both pretreated materials at 13.7% w.w(-1) TS and 20 FPU.g(-1) glucan after 96 h of hydrolysis. Ionic liquid pretreatment of the same cotton spinning residues showed moderate delignification levels, accompanied by a change in biomass crystallinity from cellulose 1 beta to cellulose II. This turned to be very important to improve enzymatic hydrolysis yields. Therefore, biomass delignification and crystallinity confirmed to be key factors governing the enzymatic saccharification of cotton spinning residues.