Browsing by Author "Bastos, Carolina R. V."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Algaeculture for agriculture: from past to futurePublication . Ferreira, Alice; Bastos, Carolina R. V.; Santos, Cláudia Marques dos; Acién, F. Gabriel; Gouveia, LuisaABSTRACT: The continuous growth of the world population has imposed major challenges on agriculture. Consequently, farmers generalized the overuse of synthetic fertilizers and pesticides to meet the global food demand. Although these products have helped many developing countries increase their crop yield, they have simultaneously resulted in many issues, mainly the decline of soil fertility and degradation of local ecosystems due to soil, water, and air contamination, combined with their non-renewable nature and increased costs. For agriculture to become more sustainable, the use of alternative biological products, with recognized beneficial effects on plant yield and health, must be expanded. In this context, microalgae and cyanobacteria are rich sources of nutrients and bioactive metabolites, which have been gaining attention from researchers and companies for their ability to improve plant nutrition, growth, and tolerance to stress. This review gives an overview of the research work that has been done in the last two decades, regarding the use of microalgae and cyanobacteria (blue-green algae) as biofertilizers, biostimulants, and biopesticides. This work identified trends and challenges and highlights the use of microalgae to recycle the nutrients from wastewater to improve plant productivity while reducing the fertilizer and water footprint for more sustainable agriculture practices.
- From piggery wastewater to wheat using microalgae towards zero wastePublication . Ferreira, Alice; Figueiredo, Daniel; Ferreira, Francisca; Marujo, Ana; Bastos, Carolina R. V.; Martin-Atanes, Guillermo; Ribeiro, Belina; Štěrbová, Karolína; Santos, Cláudia Marques dos; Acién, F. Gabriel; Gouveia, LuisaABSTRACT: Microalgae production is still expensive, driving the need to lower costs while strengthening the industry's environmental sustainability. Microalgae are recognized tools for efficient wastewater treatment, offering the recycling of nutrients and water for agriculture, and producing biomass rich in growth-promoting compounds to improve plant productivity and resistance to adverse conditions. The use of wastewater can reduce cultivation costs as it is a source of nutrients and water. Alternative low-cost methods can significantly decrease harvesting costs, which represents one of the most expensive steps of the whole process.The goal of this work was to evaluate the potential of wastewater-grown microalga biomass for agriculture purposes. To reduce production costs, the microalga Tetradesmus obliquus was produced in pre-treated photo-Fenton (PF) piggery wastewater in combination with the use of different harvesting techniques - electro-coagulation, flocculation, and centrifugation, and different combinations. From the wastewater treatment pro-cess, two fractions (biomass and supernatant) were evaluated for germination and growth of wheat (Triticum aestivum L.) plants and compared to non-harvested microalga culture (MC), distilled water, and Hoagland (synthetic) solution. The concentrated resulting from PF was also tested as a biofertilizer.The results confirm that both biomass and supernatants are useful for agricultural applications. The obtained biomass elicited a 20-105 % increase in germination index compared to the control, while supernatants were inhibiting. The opposite trend was observed at later stages of wheat growth, where the nutrient-enriched su-pernatants and the PF concentrate (PF-CC) increased the number of tillers (3-5) and leaves (30-42) after 83 days. Wheat plants treated with MC and PF-CC produced similar number of ears (3.4 & PLUSMN; 0.5 and 6.0 & PLUSMN; 4.1 ears per plant, respectively) than the synthetic control (5.7 & PLUSMN; 1.4) after 182 days. All fractions obtained from the process can be used in a zero-waste process.