Browsing by Author "Carlini, Enrico Maria"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
- C-E (curtailment - Energy share) map: An objective and quantitative measure to evaluate wind and solar curtailmentPublication . Yasuda, Yoh; Bird, Lori; Carlini, Enrico Maria; Eriksen, Peter Børre; Estanqueiro, Ana; Flynn, Damian; Fraile, Daniel; Lázaro, Emilio Gómez; Martín-Martínez, Sergio; Hayashi, Daisuke; Holttinen, Hannele; Lew, Debra; McCann, John; Menemenlis, Nickie; Miranda, Raul; Orths, Antje; Smith, J. Charles; Taibi, Emanuele; Vrana, Til KristianABSTRACT: s the share of VRE (variable renewable energy) has grown rapidly, curtailment issues have arisen worldwide. This paper evaluates and compares curtailment situations in selected countries using an objective and quantitative evaluation tool named the "C-E map " (curtailment-energy share map). The C-E map is a correlation map between curtailment ratios that mean curtailed wind (or solar) energy per available energy and energy shares of wind (or solar). The C-E map can draw a historical trend curve in a given country/area, as an at-a-glance tool to enable historical and/or international comparison. The C-E map also can classify the given countries/areas into several categories, according to the current levels of curtailment ratio and historical trends. The C-E map helps institutional and objective understanding of curtailment for non-experts including policy makers.
- Contribution of energy storage for large-scale integration of variable generationPublication . Estanqueiro, Ana; Ardal, Atle Rygg; O'Dwyer, Ciara; Flynn, Damian; Huertas-Hernando, Daniel; Lew, Debra; Gomez-Lázaro, E.; Carlini, Enrico Maria; Solvang, Eivind; Ela, Erik; Kiviluoma, Juha; Rodrigues, L.; Amelin, MikaelThe amount of wind power and other timevariable non-dispatchable renewable energy sources (VRES) such as photovoltaics (PV) is rapidly increasing in the world. Several power systems in Europe are already facing a very high penetration from variable renewables which is posing concerns on the operational stability limits that are being surpassed for extreme RES generation conditions. Most transmission system operators are defining VRES limits of penetration, thus, requiring the renewable energy excess to be curtailed, exported or stored. Energy storage may play a relevant role in maximizing the long term penetration of VRES if used as a technical mean to regulate the daily, weekly and annual profiles of variable generation (VG). This paper reviews the storage technologies that are available and may be used on a power system scale and performs a cost/benefit analysis discussing their advantages and disadvantages for the integration of fastgrowing renewables, such as wind power and PV.
- Design and operation of energy systems with large amounts of variable generation: Final summary report, IEA Wind TCP Task 25Publication . Holttinen, Hannele; Kiviluoma, Juha; Helistö, Niina; Levy, Thomas; Menemenlis, Nickie; Jun, Liu; Cutululis, Nicolaos Antonio; Koivisto, Matti; Das, Kaushik; Orths, Antje; Eriksen, Peter Børre; Neau, Emmanuel; Bourmaud, Jean-Yves; Dobschinski, Jan; Pellinger, Christoph; von Roon, Serafin; Guminski, Andrej; Flynn, Damian; Carlini, Enrico Maria; Yasuda, Yoh; Tanabe, Ryuya; Watson, Simon; van der Meer, Arjen; Morales-España, Germán; Korpås, Magnus; Vrana, Til Kristian; Estanqueiro, Ana; Couto, António; Silva, Bernardo; Martínez, Sergio Martín; Söder, Lennart; Strbac, Goran; Pudjianto, Danny; Giannelos, Spyros; Frew, Bethany; Hodge, Bri-Mathias; Shah, Shahil; Smith, J. Charles; Lew, Debbie; O'Malley, Mark; Klonari, VasilikiABSTRACT: This report summarises findings on wind integration from the 17 countries or sponsors participating in the International Energy Agency Wind Technology Collaboration Programme (IEA Wind TCP) Task 25 from 2006–2020. Both real experience and studies are reported. Many wind integration studies incorporate solar energy, and most of the results discussed here are valid for other variable renewables in addition to wind. The national case studies address several impacts of wind power on electric power systems. In this report, they are grouped under long-term planning issues and short-term operational impacts. Long-term planning issues include grid planning and capacity adequacy. Short-term operational impacts include reliability, stability, reserves, and maximising the value of wind in operational timescales (balancing related issues). The first section presents the variability and uncertainty of power system-wide wind power, and the last section presents recent studies toward 100% shares of renewables. The appendix provides a summary of ongoing research in the national projects contributing to Task 25 for 2021–2024. The design and operation of power and energy systems is an evolving field. As ambitious targets toward net-zero carbon energy systems are announced globally, many scenarios are being made regarding how to reach these future decarbonized energy systems, most of them involving large amounts of variable renewables, mainly wind and solar energy. The secure operation of power systems is increasingly challenging, and the impacts of variable renewables, new electrification loads together with increased distribution system resources will lead to somewhat different challenges for different systems. Tools and methods to study future power and energy systems also need to evolve, and both short term operational aspects (such as power system stability) and long-term aspects (such as resource adequacy) will probably see new paradigms of operation and design. The experience of operating and planning systems with large amounts of variable generation is accumulating, and research to tackle the challenges of inverter-based, nonsynchronous generation is on the way. Energy transition and digitalization also bring new flexibility opportunities, both short and long term.
- Flexibility chart 2.0: An accessible visual tool to evaluate flexibility resources in power systemsPublication . Yasuda, Yoh; Carlini, Enrico Maria; Estanqueiro, Ana; Eriksen, Peter Børre; Flynn, Damian; Herre, Lars Finn; Hodge, Bri-Mathias; Holttinen, Hannele; Koivisto, Matti; Gómez-Lázaro, E.; Martínez, Sergio Martín; Menemenlis, Nickie; Morales-España, Germán; Pellinger, Christoph; Ramos, Andrés; Smith, Charlie; Vrana, Til KristianABSTRACT: Various aspects of power system flexibility are evaluated within the multi-country study framework of IEA Wind Task 25. Grid components and actions which have been adopted for enhancing flexibility in different areas, countries, regions are addressed, as well as how Transmission System Operators, Independent System Operators, Utilities intend to manage variable generation in their operating strategies. A visual assessment to evaluate the diversity of flexibility sources, called a “flexibility chart”, is further developed to illustrate several flexibility parameters (e.g., hydropower, pumped hydro, gas turbine, combined heat and power, interconnection and battery) in a polygonal radar (fan-shaped) chart. This enhanced version of the Flexibility Chart is an “at-a-glance” and “easy-to-understand” tool to show how to estimate the potential of flexibility resources in a given country or area, and is accessible for non-technical experts. The Flexibility Chart 2.0 is also a useful tool to compare the past and future flexibility of a system. Comparing the historical change of flexibility resources may not only be helpful to discuss energy policy in regions with high installed variable renewable generation, but also to contribute to the discussion in other regions where renewables have not been widely adopted yet.
- Flexibility chart: Evaluation on diversity of flexibility in various areasPublication . Yasuda, Yoh; Ardal, Atle Rygg; Carlini, Enrico Maria; Estanqueiro, Ana; Flynn, Damian; Gomez-Lázaro, E.; Holttinen, Hannele; Kiviluoma, Juha; Van Hulle, Frans; Kondoh, Junji; Lange, Bernhard; Menemenlis, Nickie; Milligan, Michael; Orths, Antje; Smith, J. Charles; Soder, LennartThis paper evaluates various aspects of flexibility in power systems worldwide within the multi-country study framework of IEA Wind Task 25, including grid components and actions which have been favoured for enhancing flexibility in different areas/countries/regions, and how TSOs/ISOs/ utilities intend to manage variable generation in their operating strategies. One methodology to evaluate the diversity of flexibility sources is a "flexibility chart”, which can illustrate several flexibility parameters (e.g. hydro, CCGT, CHP, interconnection) in a polygonal radar (spider) chart.
- Review of wind generation within adequacy calculations and capacity markets for different power systemsPublication . Soder, Lennart; Tómasson, Egill; Estanqueiro, Ana; Flynn, Damian; Hodge, Bri-Mathias; Kiviluoma, Juha; Korpås, Magnus; Neau, Emmanuel; Couto, António; Pudjianto, Danny; Strbac, Goran; Burke, Daniel; Gomez, Tomas; Das, Kaushik; Cutululis, Nicolaos Antonio; Van Hertem, Dirk; Hoschle, Hanspeter; Matevosyan, Julia; von Roon, Serafin; Carlini, Enrico Maria; Caprabianca, Mauro; Vrie, Laurens deABSTRACT: The integration of renewable energy sources, including wind power, in the adequacy assessment of electricity generation capacity becomes increasingly important as renewable energy generation increases in volume and replaces conventional power plants. The contribution of wind power to cover the electricity demand is less certain than conventional power sources; therefore, the capacity value of wind power is smaller than that of conventional plants. This article presents an overview of the adequacy challenge, how wind power is handled in the regulation of capacity adequacy, and how wind power is treated in a selection of jurisdictions. The jurisdictions included in the overview are Sweden, Great Britain, France, Ireland, United States (PJM and ERCOT), Finland, Portugal, Spain, Norway, Denmark, Belgium, Germany, Italy and the Netherlands.
- Summary of experiences and studies for wind integration: IEA Wind Task 25Publication . Holttinen, Hannele; Robitaille, André; Orths, Antje; Pineda, Ivan; Lange, Bernhard; Carlini, Enrico Maria; O’Malley, Mark; Dillon, Jody; Tande, John Olav; Estanqueiro, Ana; Gomez-Lázaro, E.; Soder, Lennart; Milligan, Michael; Smith, J. CharlesIEA WIND R&D Task 25 on “Design and Operation of Power Systems with Large Amounts of Wind Power” collects and shares information on wind generation impacts on power systems, with analyses and guidelines on methodologies. This paper summarizes the main results from the report published on January 2013 describing experience of wind integration as well as the most relevant wind power grid integration studies in the 15 participating countries. The studies build on the already significant experience in integrating wind power in power systems addressing concerns about the impact of wind power’s variability and uncertainty on power system security of supply and costs as well as grid reinforcement needs. The mitigation of wind power impacts includes more flexible operational methods, incentivising flexibility in other generating plants, increasing interconnection to neighbouring regions, and application of demand-side flexibility. Electricity storage is still not as cost effective in larger power systems as other means of flexibility, but is already seeing initial applications in places with limited transmission.
- Wind and solar curtailmentPublication . Lew, Debra; Bird, Lori; Milligan, Michael; Speer, Bethany; Wang, Xi; Carlini, Enrico Maria; Estanqueiro, Ana; Flynn, Damian; Gomez-Lázaro, E.; Holttinen, Hannele; Menemenlis, Nickie; Orths, Antje; Smith, J. Charles; Soder, Lennart; Sorensen, Poul; Altiparmakis, Argyrios; Yoh, YasudaHigh penetrations of wind and solar generation on power systems are resulting in increasing curtailment. Wind and solar integration studies predict increased curtailment as penetration levels grow. This paper examines experiences with curtailment on bulk power systems internationally. It discusses how much curtailment is occurring, how it is occurring, why it is occurring, and what is being done to reduce curtailment. This summary is produced as part of the International Energy Agency Wind Task 25 on Design and Operation of Power Systems with Large Amounts of Wind Power.