Browsing by Author "Gomes, Miguel"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Efficient conversion of agricultural and forest residues into bioethanol: BIOFLEXPOR as flexible technology towards sugar-based biorefineries [Poster]Publication . Marques, Susana; Paixão, Susana M.; Alves, Luís; Gomes, Miguel; Eusebio, Ana; Lopes, Tiago; Coelho, Lucas; Diebold, Eduardo; Gírio, FranciscoABSTRACT: Lignocellulosic ethanol is in the upfront of advanced biofuels to be commercialized worldwide. However, the commercial deployment of 2G ethanol is dependent of high biomass availability and cost-effective supply. In Europe, some agricultural residues are presently underused and constitute attractive renewable resources. In addition, residual forest biomass, non-seasonably available at low cost, might be complementarily used as raw material boosting the economy of biorefineries. In this context, the present work deals with the development of an innovative and sustainable technological strategy to produce advanced bioethanol using agricultural and forestry residual biomass. The bioprocess involves enzymatic hydrolysis of major lignocellulose polysaccharides (cellulose and xylan) with commercial enzymes and fermentation of the resulting sugars. A pre-treatment step should firstly be accomplished to make cellulose more amenable to hydrolytic enzymes, and the prototype is based on a proprietary non-catalysed steam explosion technology, i.e., without the addition of acids and using only high-pressure steam, called FLEXBIO™, which was initially developed in Brazil by the company STEX and since 2019 in partnership with LNEG. The proposed technology has been successfully demonstrated in a relevant environment (TRL 5) for the efficient conversion of corn stover, olive tree pruning and eucalyptus-based forest residual biomass, yielding close to 150 L of ethanol per metric tonne (dry basis) of biomass, corresponding to an overall yield close to 75% of maximal theoretical yield for glucan conversion. Both enzymatic hydrolysis and fermentation steps have achieved yields superior to 85% of the maximal theoretical conversion, and the optimization of process configuration, targeting the best integration with pre-treatment, is now under progress and higher yields will be expected. Given the higher xylan content of corn stover, both cellulose and xylan fractions are pursued. In addition, the upgrading potential of all wastewater streams will also be assessed, by studying the feasibility of its combined use to increase the ethanol yield as alternative to its use for biogas production through anaerobic digestion, with the goal to reach near-zero waste. In conclusion, the present study reveals the industrial potential of this flexible technology that might be applied to implement distinct small-scale sugar-based biorefineries by converting several lignocellulosic raw materials into distinct marketable biofuels/biomaterials, promoting the circular bioeconomy.
- Estudo da dinâmica recente no litoral norte de Portugal com recurso a veículos aéreos não tripulados e fotogrametriaPublication . Henriques, Renato; Chikhradze, Nino; Correia, J.; Gomes, P.; Gomes, Miguel; Gonçalves, C.; Maia, J.; Peixoto, P.; Silva, J.; Pereira, P.RESUMO: Um conhecimento detalhado e atualizado da morfodinâmica local é fundamental para apoiar as decisões e iniciativas de gestão costeira na costa arenosa atlântica do Norte de Portugal. Nos últimos anos foram realizados levantamentos fotográficos de alta precisão com recurso a veículos aéreos não tripulados. As imagens foram processadas e foram produzidos Modelos Digitais de Superfície (MDS) e ortomosaicos de grande resolução utilizando software de fotogrametria. Os procedimentos de medição e a comparação entre séries de dados temporalmente diferenciadas permitiram estabelecer tendências de evolução geomorfológica em diferentes sectores e foi possível, para alguns casos, quantificar a quantidade de sedimentos deslocados e determinar as causas dos episódios erosivos ou de deposição. Os resultados obtidos mostram que a utilização destas ferramentas de baixo custo e elevada precisão é uma excelente opção para apoiar as decisões na gestão das áreas costeiras.
- Production of sustainable aviation fuel precursors using the oleaginous yeast Rhodotorula toruloides PYCC 5615 cultivated on eucalyptus bark hydrolysatePublication . Saraiva Lopes da Silva, Maria Teresa; Dutra, Francisca; Gomes, Miguel; Costa, Paula; Paradela, Filipe; Ferreira, Frederico Castelo; Torres Faria, Nuno Ricardo; Mugica, Paula; Pinheiro, Helena M.; Sá-Correia, Isabel; Gírio, Francisco; Marques, SusanaABSTRACT: Sustainable aviation fuels (SAF) obtained from renewable sources of carbon can reduce carbon dioxide emissions and contribute for mitigating climate changes. In the present study, the yeast Rhodotorula toruloides PYCC 5615 was found to be highly promising for the bioconversion of eucalyptus bark hydrolysate and the accumulation of intracellular lipids which were further thermochemically processed to bioenergy intermediaries for SAF production. Two growth medium formulations were tested. Eucalyptus bark hydrolysate, obtained by steam explosion followed by enzymatic hydrolysis, was supplemented with yeast nitrogen base medium or with corn steep liquor and mineral medium. The latter produced the highest fatty acid content and productivity (30 % w/w and 0.11 g/ (L.h) respectively). Thereafter, the whole yeast biomass (WB) and the de-oiled biomass (DOB), obtained after lipid extraction, were processed into Bio-crude using a hydrothermal liquefaction (HTL) reactor, with a yield of approximate to 40 % (w/w). The two obtained Bio-crude fractions and the yeast lipids fraction (YL) were further upgraded by hydrodeoxygenation (HDO), to remove oxygen atoms and increase the hydrocarbon content, resulting in a Bio-crude composed of linear long-chain fatty acids suitable for processing to SAF. The best Bio-crude characteristics was observed for WB and YL fractions, with 34.8 % and 40.7 % of hydrocarbons, respectively. Both WB and YL hydrocarbons were composed of C15-C17 compounds. These results demonstrate the potential of an integrated process based on microbial oils from R. toruloides PYCC 5615 to produce SAF precursors from Eucalyptus bark residues, contributing for the sustainable jetfuel bioproduction process.