ENERGIA
Permanent URI for this community
Browse
Browsing ENERGIA by Field of Science and Technology (FOS) "Engenharia e Tecnologia::Biotecnologia Ambiental"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
- Benchmarking commercially available value-added fractions with potential for production via microalgae-based biorefineries: is it worth it?Publication . Ferreira, Flávio; Reis, Alberto; Ortigueira, Joana; Lopes, TiagoABSTRACT: The urgent need to mitigate climate change requires finding sustainable and efficient alternatives to fossil fuel-based materials. Biosequestration by microalgae has been suggested as a potential method for climate change mitigation due to its environmentally friendly nature and ability to produce high-value compounds. However, the large-scale application of microalgal biorefineries faces significant challenges, particularly in the harvest and processing stages, which are often costly and energy-intensive. This study aims to benchmark value-added fractions that can be produced via microalgae-based biorefineries against their commercially available counterparts. A systematic review was conducted using the Web of Science™ database to identify current commercial sources of proteins, lipids, polyunsaturated fatty acids and pigments, this study identified key sectors and applications for each fraction, as well as potential market competitors. The results highlight substantial cost differences across production systems, with traditional agricultural sources demonstrating lower CAPEX but greater environmental challenges. Meanwhile, microalgal systems, although associated with higher CAPEX, offer advantages such as reduced land and water dependency, potentially leading to long-term economic resilience and environmental sustainability. By pinpointing research trends, key sectors and optimization opportunities, this work offers valuable insights into the profitability and competitiveness of microalgal systems, providing a benchmark for future optimization efforts. The novelty of this research lies in its comprehensive comparison of microalgae-based and traditional production systems, establishing a clear benchmark for microalgal production and suggesting focus areas for enhancement.
- Bio-oil from hydrothermal liquefaction of microalgae cultivated in wastewater: An economic and life cycle approachPublication . Silva, Thiago; Junior, Maurino Magno de Jesus; Magalhães, Iara; Ananias, Marina Stefany; Saleme Aona de Paula Pereira, Alexia; Rodrigues, Fábio de Ávila; Delgado dos Reis, Alberto José; Calijuri, Maria LuciaABSTRACT: Although microalgae are a promising sustainable biofuel feedstock, their energy-intensive production and most environmental assessments rarely achieve the desired trade-off between productivity and sustainability. In this context, this study aims to evaluate the economic and environmental feasibility of producing bio-oil via hydrothermal liquefaction (HTL) of wastewater-grown microalgae at an industrial scale. Four scenarios varied production scale and steam source: sugarcane bagasse (SCB) in SC1 and SC3, liquefied petroleum gas (LPG) in SC2 and SC4. Each scenario processed microalgae at 300 degrees C for 30 min. Smaller-scale feedstock (1332.9 kg/h) in SC1 and SC2 produced 34.6 kg/h of bio-oil, while the larger feedstock (85,554.4 kg/h) in SC3 and SC4 yielded 2222.2 kg/h. Microalgae biomass cultivation costs dominated overall expenses (56-75 %). Economic analyses indicated minimum selling prices of 3.82-8.52 USD/kg, exceeding the average literature figure of 1.57 USD/kg. Life Cycle Assessment (LCA) showed SCB reduced fossil resource depletion by 14.97 % compared to LPG but increased emissions of nitrogen oxides, particulates, and toxic compounds, which are manageable via selective catalytic reduction and flue gas desulphurization. Cyclohexane as a solvent elevated human carcinogenic toxicity, greener alternatives could reduce toxicity but may cost more, requiring further cost analysis. Advancing this biorefinery route requires optimization of cultivation and processing costs, adoption of environmentally benign solvents, and implementation of emission control strategies to enable economically feasible and environmentally sustainable bio-oil production.
- Consortium of microalgae/nitrogen-fixing bacteria as a next-generation biofertilizer, biostimulant and biopesticidePublication . Gouveia, Luisa; Ferreira, Alice; Bastos, Carolina R. V.; Avetisova, Gayane; Karapetyan, Zh.; Toplaghaltsyan, A.; Melkonyan, LusineABSTRACT: This study aims to provide insights into a new consortium of a microalga, twelve nitrogen-fixing (N-fixing) bacteria and a cyanobacterium. The microalga Tetradesmus obliquus (T), in conjunction with various N-fixing bacteria and the cyanobacterium Synechocystis sp. PCC 6803 (S), the N-fixing bacterium Sphingobacterium sp. L13G8 (5), cultivated in complete Bristol medium and in Bristol-NaNO3 free conditions, were examined. The study encompassed the analysis of their consortia, including evaluation of their growth, and potential as a biostimulant, biofertilizer and biopesticide, and assessed for sedimentation performance for targeted applications. The T and N-fixing bacteria consortia had higher growth in Bristol NaNO3-free media. The triple culture TS5 had the highest growth parameter (2.4 OD540) in the same medium, followed by T5. The consortia were employed to ascertain the efficacy of their biostimulants and biofertilizers on watercress (Lepidium sativum) and to determine the potency of their biopesticides against the fungal pathogens Fusarium oxysporum and Rhizoctonia solani (in certain consortia). Consortium T5 demonstrated the most significant impact on the seeds germination index (212.7%) and root length (6.0 cm) of L. sativum. The same consortium had a significant impact on the shoot length (4.4 cm) of L. sativum. Among all consortia that were examined, T5 exhibited significant inhibitory effects on the growth of F. oxysporum (60.6%) and R. solani (69.2%). In the same consortium, the rate of microalgal biomass sedimentation was enhanced by the N-fixing bacterium (0.4 cm h-1). Consortium T5 was the most effective in relation to growth and biomass sedimentation efficiency, in addition to its use as a biostimulant, biofertilizer and biopesticide. The created combination of microalga and N-fixing bacterium represents significant progress in the field of microalga cultivation, with notable benefits including improved biomass sedimentation and enhanced agricultural practices, as well as environmental friendliness and safety.
- Development of a georeferenced database as a tool to improve circular material flows in lignocellulosic waste valorization [Poster]Publication . Silva, Tiago; Eusebio, Ana; Camocho, David; Alexandre, Jorge; Sousa Rocha, Cristina; Patinha, Pedro; Quental, Lídia; Gírio, Francisco; Moura, PatríciaABSTRACT: The Frontsh1p project aims to accelerate the development and implementation of cross-sector circular value chains through the creation of a multi-level toolkit that includes georeferenced data. This will facilitate the identification of the different stakeholders, their levels of interaction, regional distribution, and communication pathways, as well as the planning of new circular material flows for by-products and waste streams. The region of Łódzkie in Poland was selected for the development of this toolkit to establish guidelines, methodologies and technologies, based on information at the regional economic level, that can be easily replicated in different regions across Europe.
- Editorial: The biorefineries and application of green technologies for recovering bioactive compounds from microalgaePublication . Vladic, Jelena; Gouveia, LuisaABSTRACT: Microalgae are attracting growing scientific and industrial interest as a renewable and versatile source of high-value bioactive compounds, including pigments, fatty acids, proteins, and antioxidants. Their rapid growth, ability to adapt to extreme conditions, and rich biochemical composition make them a promising resource for sustainable development across a range of applications. From cosmetics to food supplements, their potential spans multiple industries. Still, the considerable gap between encouraging laboratory research and commercially viable production remains. One of the major challenges lies in developing methods for extracting and preserving these compounds in ways that are both efficient and environmentally responsible.
- Energy potential of elephant grass broth as biomass for biogas productionPublication . da Silva, Guilherme Henrique; Renato, Natalia dos Santos; Coelho, Felipe Ferreira; Donato, Thiago Paiva; Otenio, Marcelo; Machado, Juarez; Delgado dos Reis, Alberto JoséABSTRACT: The growing demand for clean energy has highlighted plant biomass as a valuable alternative, supporting sustainable development goals. Elephant grass (EG) is a promising feedstock due to its adaptability to diverse soils and climates, high dry matter production, and substantial energy yield. This study aimed to evaluate and characterize six selected EG genotypes (BRS Capia & ccedil;u, T_23.1, T_23.2, T_41.2, T_47.1, and T_51.5) based on their broth productivity and energy yield. Analysis of the broth's yield and physicochemical properties revealed that the by-product extracted from the biomass had a high residual energy value. Additionally, extracting the broth reduces the grass's biomass moisture content, enhancing its calorific value and improving the bagasse quality for combustion in boilers, thus optimizing energy production. This study demonstrates that the promising EG genotypes T_47.1, T_41.2, and T_23.1 presented relevant energy values ranging from 4248.12 to 4304.06 kcal kg- 1 of bagasse and thus are suitable for energy production through direct combustion. The extracted broth is a valuable residual energy source that can be utilized industrially after anaerobic digestion. Future research should focus on the environmental and economic effectiveness of EG broth as an energy source from waste and its potential for biogas production.
- Microalgae-associated Stenotrophomonas maltophilia enhances lutein production and biostimulant activity in Monoraphidium spPublication . Manoel, João; Štěrbová, Karolína; Saini, Mohit Kumar; Barcenas-Perez, Daniela; Cheel, José; Grivalsky, Tomás; Lakatos, Gergely Erno; Lukes, Martin; Urajová, Petra; Ferreira, Alice; Figueiredo, Daniel; Gouveia, Luisa; Masojidek, Jiri; Saurav, KumarABSTRACT: Photosynthetic organisms like microalgae can collect solar energy and transform it into biochemical compounds as other forms of energy that can be utilized in metabolic processes. In nature, microalgae coexist with bacterial communities and may maintain a symbiotic relationship. In the current study, a heterotrophic bacterium, Stenotrophomonas maltophilia was isolated from the phycosphere of a cold-adapted green microalga Monoraphidium sp. (further abbreviated as Monoraphidium). By using advanced liquid chromatography-high-resolution tandem mass spectrometry (LC-HRMS/MS), we were able to detect homoserine lactones (HSLs): 3OHC12-HSL, 3OHC10-HSL, 3OHC14-HSL, C10-HSL, C8-HSL, and OC14-HSL, produced by S. maltophilia. Further, the role of this bacterium in establishing intricate relationships and its implication on biotechnological potential was evaluated. Significant improvements were found in the lutein production of the Monoraphidium culture with bacterial supplements, achieving about 19.3 +/- 0.88 mg g-1 DW of this carotenoid compared to 13.7 +/- 1.87 mg g-1 DW in the control, which represents an increase of about 40 %. Furthermore, the biostimulant potential of Monoraphidium was evaluated using the germination tests with tomato and barley seeds. A higher germination index was observed with improvements of 55 % in tomato and 110 % in barley, respectively, as compared to the control culture, which was related to the microalgae's growth stage. The role of the bacterium was evaluated in how the intricate relationships with the microalgal culture can affect its biotechnological potential (e.g., biostimulant activity and lutein production). The current work expands our knowledge towards designing an efficient polyculture based on complementary traits and metabolic potential to maximize the yield and bioactivity in algal biotechnology.
- Production of sustainable aviation fuel precursors using the oleaginous yeast Rhodotorula toruloides PYCC 5615 cultivated on eucalyptus bark hydrolysatePublication . Saraiva Lopes da Silva, Maria Teresa; Dutra, Francisca; Gomes, Miguel; Costa, Paula; Paradela, Filipe; Ferreira, Frederico Castelo; Torres Faria, Nuno Ricardo; Mugica, Paula; Pinheiro, Helena M.; Sá-Correia, Isabel; Gírio, Francisco; Marques, SusanaABSTRACT: Sustainable aviation fuels (SAF) obtained from renewable sources of carbon can reduce carbon dioxide emissions and contribute for mitigating climate changes. In the present study, the yeast Rhodotorula toruloides PYCC 5615 was found to be highly promising for the bioconversion of eucalyptus bark hydrolysate and the accumulation of intracellular lipids which were further thermochemically processed to bioenergy intermediaries for SAF production. Two growth medium formulations were tested. Eucalyptus bark hydrolysate, obtained by steam explosion followed by enzymatic hydrolysis, was supplemented with yeast nitrogen base medium or with corn steep liquor and mineral medium. The latter produced the highest fatty acid content and productivity (30 % w/w and 0.11 g/ (L.h) respectively). Thereafter, the whole yeast biomass (WB) and the de-oiled biomass (DOB), obtained after lipid extraction, were processed into Bio-crude using a hydrothermal liquefaction (HTL) reactor, with a yield of approximate to 40 % (w/w). The two obtained Bio-crude fractions and the yeast lipids fraction (YL) were further upgraded by hydrodeoxygenation (HDO), to remove oxygen atoms and increase the hydrocarbon content, resulting in a Bio-crude composed of linear long-chain fatty acids suitable for processing to SAF. The best Bio-crude characteristics was observed for WB and YL fractions, with 34.8 % and 40.7 % of hydrocarbons, respectively. Both WB and YL hydrocarbons were composed of C15-C17 compounds. These results demonstrate the potential of an integrated process based on microbial oils from R. toruloides PYCC 5615 to produce SAF precursors from Eucalyptus bark residues, contributing for the sustainable jetfuel bioproduction process.
- Reducing nutrient requirement using nitrogen-fixing bacteria for microalgae cultivationPublication . Melkonyan, Lusine; Ferreira, Alice; Bastos, Carolina R. V.; Figueiredo, Daniel; Lopes da Silva, Teresa; Avetisova, Gayane; Karapetyan, Zh.; Toplaghaltsyan, A.; Gouveia, LuisaABSTRACT: In environments, microalgae have been observed to coexist with bacteria. Different nitrogen-fixing bacteria (NFB) were isolated from Armenian soils and their growth was evaluated in co-cultivation with the microalga Tetradesmus obliquus and cyanobacteria Synechocystis sp. PCC 6803. The most effective mutualistic consortium was T. obliquus-NFB5 (Sphingobacterium sp. L13G8). This resulted an increase in both populations, chlorophyll fluorescence, biomass protein, carbohydrate content, an effect on lipid metabolism, without the need for external nitrogen. The findings demonstrated the significance of employing NFB for microalga growth, as they facilitate the essential nitrogen provision in N-free Bristol medium. Moreover, in mutualistic consortia, microalgae facilitate the exudation of dissolved organic carbon and O2 to bacteria, which, in turn, become available for bacteria, thereby reducing the necessity for energy-consuming aeration processes in co-cultivation. In return, the bacteria provide the microalgae with CO2, B vitamins and demineralize N2, P, S, thereby further supporting the growth of microalgae.