Bioenergia - UB
URI permanente desta comunidade:
Navegar
Percorrer Bioenergia - UB por Domínios Científicos e Tecnológicos (FOS) "Engenharia e Tecnologia::Engenharia dos Materiais"
A mostrar 1 - 2 de 2
Resultados por página
Opções de ordenação
- Advancing Sustainable Production of High-Performance Cellulose PulpsPublication . Moran, Guadalupe; Costa Trigo, Iván; Bastida, Gabriela Adriana; Mazega, André; Duran, Josep; Domínguez, José Manuel; Vilaseca, FabiolaABSTRACT: Highlights What are the main findings? Enzymatic hydrolysis pretreatment of industrial pulps Pulp composition influencing the enzymatic performance Enhanced conditions for high-performance cellulose pulps What is the implication of the main finding? Sustainable methodology to produce cellulose pulps Lower environmental impact and alignment with circular economic principles Improvements in tensile strength, air permeability, hydrophobicity, and internal bondingHighlights What are the main findings? Enzymatic hydrolysis pretreatment of industrial pulps Pulp composition influencing the enzymatic performance Enhanced conditions for high-performance cellulose pulps What is the implication of the main finding? Sustainable methodology to produce cellulose pulps Lower environmental impact and alignment with circular economic principles Improvements in tensile strength, air permeability, hydrophobicity, and internal bondingAbstract With a growing demand for renewable resources in high-performance materials, sustainable methods are preferred for their lower environmental impact and alignment with circular economy principles. Among these, enzymatic hydrolysis remains relatively underexplored yet shows strong potential for cellulose fibrillation, offering a promising route that may lower energy requirements by minimizing the need for extensive refining compared to conventional mechanical or chemical approaches. In this study, enzyme cocktails rich in cellulase and xylanase were applied to three industrial pulps, sulphite, bleached Kraft eucalyptus and thermomechanical pine, to produce high-performance cellulose pulps. Treatments were carried out using varying enzyme loads (5-40 filter paper units per gram of dry pulp, FPU/gdp) and reaction times (1-16 h). The resulting chemical composition, structural morphology, and physical-mechanical properties were systematically evaluated. The findings revealed that pulp composition strongly influenced enzymatic treatment, affecting surface fibrillation, fibre aggregation, swelling, and fibre shortening. Under optimized conditions, enzymatic pretreatment significantly enhanced paper performance, with improvements in tensile strength, air permeability, hydrophobicity, and internal bonding. Overall, enzymatic hydrolysis represents a sustainable solution and a strategy which could reduce energy expenditures to high-performance cellulose pulps, suitable as reinforcing fibres in packaging applications.
- Enhancing the Biorefinery of Chestnut Burrs, Part II: Influence of Pretreatment with Choline Chloride–Urea-Diluted Deep Eutectic Solvent on Enzymatic HydrolysisPublication . Costa Trigo, Iván; Moran, Guadalupe; Pérez Guerra, Nelson; Oliveira, Ricardo; Domínguez, José ManuelABSTRACT: Agro-industrial chestnut waste derived from chestnut processing is usually discharged without further use. However, these residues are attractive due to their high-value composition, rich in sugars and lignin. Among these residues, chestnut burrs (CB) represent a promising feedstock for biorefinery applications aimed at maximizing the valorization of their main constituents. In this study, we propose an environmentally friendly approach based on deep eutectic solvents (DES) formed by choline chloride and urea (ChCl/U) (1:2, mol/mol) for the selective deconstruction of lignocellulosic architecture, followed by enzymatic hydrolysis to release second-generation (2G) fermentable sugars. Pretreatments were applied to raw CB, washed CB (W-CB), and the obtained solid fraction after prehydrolysis (PreH). Structural and morphological modifications, as well as crystallinity induced by DES pretreatment, were characterized using attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR), field emission scanning electron microscopy (FE-SEM), and X-ray diffraction (XRD). Remarkable results in terms of effectiveness and environmental friendliness on saccharification yields were achieved for PreH subjected to DES treatment for 8 h, reaching approximately 60% glucan and 74% xylan conversion under the lower enzyme loading (23 FPU/g) and liquid-to-solid ratio (LSR) of 20:1 studied. This performance significantly reduces DES pretreatment time from 16 h to 8 h at mild conditions (100 degrees C), lowers the LSR for enzymatic hydrolysis from 30:1 to 20:1, and decreases enzyme loading from 63.5 FPU/g to 23 FPU/g, therefore improving process efficiency and sustainability.
