Materiais para a Energia - ME
Permanent URI for this community
Browse
Browsing Materiais para a Energia - ME by Sustainable Development Goals (SDG) "13:Ação Climática"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Tetrahedrite Nanocomposites for High Performance ThermoelectricsPublication . Coelho, Rodrigo; Moço, Duarte; Sá, Ana; Luz, Paulo P. da; Neves, Filipe; Cerqueira, Maria de Fátima; Lopes, E.B.; Brito, Francisco; Mangelis, Panagiotis; Kyratsi, Theodora; Pereira Gonçalves, AntonioABSTRACT: Thermoelectric (TE) materials offer a promising solution to reduce green gas emissions, decrease energy consumption, and improve energy management due to their ability to directly convert heat into electricity and vice versa. Despite their potential, integrating new TE materials into bulk TE devices remains a challenge. To change this paradigm, the preparation of highly efficient tetrahedrite nanocomposites is proposed. Tetrahedrites were first prepared by solid state reaction, followed by the addition of MoS2 nanoparticles (NPs) and hot-pressing at 848 K with 56 MPa for a duration of 90 min to obtain nanocomposites. The materials were characterized by XRD, SEM-EDS, and Raman spectroscopy to evaluate the composites' matrix and NP distribution. To complement the results, lattice thermal conductivity and the weighted mobility were evaluated. The NPs' addition to the tetrahedrites resulted in an increase of 36% of the maximum figure of merit (zT) comparatively with the base material. This increase is explained by the reduction of the material's lattice thermal conductivity while maintaining its mobility. Such results highlight the potential of nanocomposites to contribute to the development of a new generation of TE devices based on more affordable and efficient materials.
- Thermal Stability and Irradiation Resistance of (CrFeTiTa)70W30 and VFeTiTaW High Entropy AlloysPublication . Pereira, André; Martins, Ricardo; Monteiro, Bernardo; Correia, Jose B.; Galatanu, Andrei; Catarino, Norberto; Jenus, Petra; Dias, MartaABSTRACT: Nuclear fusion is a promising energy source. The International Thermonuclear Experimental Reactor aims to study the feasibility of tokamak-type reactors and test technologies and materials for commercial use. One major challenge is developing materials for the reactor's divertor, which supports high thermal flux. Tungsten was chosen as the plasma-facing material, while a CuCrZr alloy will be used in the cooling pipes. However, the gradient between the working temperatures of these materials requires the use of a thermal barrier interlayer between them. To this end, refractory high-entropy (CrFeTiTa)70W30 and VFeTiTaW alloys were prepared by mechanical alloying and sintering, and their thermal and irradiation resistance was evaluated. Both alloys showed phase growth after annealing at 1100 degrees C for 8 days, being more pronounced for higher temperatures (1300 degrees C and 1500 degrees C). The VFeTiTaW alloy presented greater phase growth, suggesting lower microstructural stability, however, no new phases were formed. Both (as-sintered) alloys were irradiated with Ar+ (150 keV) with a fluence of 2.4 x 1020 at/m2, as well as He+ (10 keV) and D+ (5 keV) both with a fluence of 5 x 1021 at/m2. The morphology of the surface of both samples was analyzed before and after irradiation showing no severe morphologic changes, indicating high irradiation resistance. Additionally, the VFeTiTaW alloy presented a lower deuterium retention (8.58%) when compared to (CrFeTiTa)70W30 alloy (14.41%).