Bioenergia - UB
URI permanente desta comunidade:
Navegar
Percorrer Bioenergia - UB por Objetivos de Desenvolvimento Sustentável (ODS) "07:Energias Renováveis e Acessíveis"
A mostrar 1 - 10 de 20
Resultados por página
Opções de ordenação
- Benchmarking commercially available value-added fractions with potential for production via microalgae-based biorefineries: is it worth it?Publication . Ferreira, Flávio; Reis, Alberto; Ortigueira, Joana; Lopes, TiagoABSTRACT: The urgent need to mitigate climate change requires finding sustainable and efficient alternatives to fossil fuel-based materials. Biosequestration by microalgae has been suggested as a potential method for climate change mitigation due to its environmentally friendly nature and ability to produce high-value compounds. However, the large-scale application of microalgal biorefineries faces significant challenges, particularly in the harvest and processing stages, which are often costly and energy-intensive. This study aims to benchmark value-added fractions that can be produced via microalgae-based biorefineries against their commercially available counterparts. A systematic review was conducted using the Web of Science™ database to identify current commercial sources of proteins, lipids, polyunsaturated fatty acids and pigments, this study identified key sectors and applications for each fraction, as well as potential market competitors. The results highlight substantial cost differences across production systems, with traditional agricultural sources demonstrating lower CAPEX but greater environmental challenges. Meanwhile, microalgal systems, although associated with higher CAPEX, offer advantages such as reduced land and water dependency, potentially leading to long-term economic resilience and environmental sustainability. By pinpointing research trends, key sectors and optimization opportunities, this work offers valuable insights into the profitability and competitiveness of microalgal systems, providing a benchmark for future optimization efforts. The novelty of this research lies in its comprehensive comparison of microalgae-based and traditional production systems, establishing a clear benchmark for microalgal production and suggesting focus areas for enhancement.
- Bio-oil from hydrothermal liquefaction of microalgae cultivated in wastewater: An economic and life cycle approachPublication . Silva, Thiago; Junior, Maurino Magno de Jesus; Magalhães, Iara; Ananias, Marina Stefany; Saleme Aona de Paula Pereira, Alexia; Rodrigues, Fábio de Ávila; Delgado dos Reis, Alberto José; Calijuri, Maria LuciaABSTRACT: Although microalgae are a promising sustainable biofuel feedstock, their energy-intensive production and most environmental assessments rarely achieve the desired trade-off between productivity and sustainability. In this context, this study aims to evaluate the economic and environmental feasibility of producing bio-oil via hydrothermal liquefaction (HTL) of wastewater-grown microalgae at an industrial scale. Four scenarios varied production scale and steam source: sugarcane bagasse (SCB) in SC1 and SC3, liquefied petroleum gas (LPG) in SC2 and SC4. Each scenario processed microalgae at 300 degrees C for 30 min. Smaller-scale feedstock (1332.9 kg/h) in SC1 and SC2 produced 34.6 kg/h of bio-oil, while the larger feedstock (85,554.4 kg/h) in SC3 and SC4 yielded 2222.2 kg/h. Microalgae biomass cultivation costs dominated overall expenses (56-75 %). Economic analyses indicated minimum selling prices of 3.82-8.52 USD/kg, exceeding the average literature figure of 1.57 USD/kg. Life Cycle Assessment (LCA) showed SCB reduced fossil resource depletion by 14.97 % compared to LPG but increased emissions of nitrogen oxides, particulates, and toxic compounds, which are manageable via selective catalytic reduction and flue gas desulphurization. Cyclohexane as a solvent elevated human carcinogenic toxicity, greener alternatives could reduce toxicity but may cost more, requiring further cost analysis. Advancing this biorefinery route requires optimization of cultivation and processing costs, adoption of environmentally benign solvents, and implementation of emission control strategies to enable economically feasible and environmentally sustainable bio-oil production.
- O Biometano em Portugal [Comunicação oral]Publication . Gírio, Francisco
- Bridging gaps in biorefineries: The unexplored role of social dimension in life cycle assessment researchPublication . Ortigueira, Joana; Lopes, TiagoABSTRACT: This review examines the disregarded role of social dimensions in Life Cycle Assessment (LCA) within biorefinery implementation, addressing the question: "How can the inclusion of social factors in LCA improve sustainability assessments, and what are the implications of the limited Social Life Cycle Assessment (S-LCA) studies in biorefineries?" A systematic literature review was conducted using Web of ScienceTM, focusing on studies that integrate social dimensions in LCA. Bibliometric analysis using the bibliometrix R-package and VOSviewer identified key trends, influential papers, and research gaps. Results revealed a significant gap in incorporating social dimensions into biorefinery LCA, with most studies focusing primarily on environmental and economic impacts. Limited attention is given to social aspects such as community well-being, labor rights, and social equity. Case studies that included social factors demonstrated a more comprehensive sustainability assessment, emphasizing the importance of stakeholder engagement and social acceptability in biorefinery projects. This review highlights the need for standardized social indicators and methodologies to integrate social dimensions effectively. The lack of S-LCA in biorefinery implementation reflects a critical gap in sustainability assessments. Addressing this requires developing a unified S-LCA methodology, fostering interdisciplinary collaboration, and encouraging stakeholder participation to ensure diverse perspectives are considered. Ultimately, incorporating social dimensions is essential for achieving a more balanced and comprehensive evaluation of biorefinery sustainability.
- CO2 and syngas utilization for bioenergy and biochemicals [Comunicação oral]Publication . Gírio, Francisco; Moura, Patrícia; Pacheco, Marta; Lourinho, Gonçalo
- Energy potential of elephant grass broth as biomass for biogas productionPublication . da Silva, Guilherme Henrique; Renato, Natalia dos Santos; Coelho, Felipe Ferreira; Donato, Thiago Paiva; Otenio, Marcelo; Machado, Juarez; Delgado dos Reis, Alberto JoséABSTRACT: The growing demand for clean energy has highlighted plant biomass as a valuable alternative, supporting sustainable development goals. Elephant grass (EG) is a promising feedstock due to its adaptability to diverse soils and climates, high dry matter production, and substantial energy yield. This study aimed to evaluate and characterize six selected EG genotypes (BRS Capia & ccedil;u, T_23.1, T_23.2, T_41.2, T_47.1, and T_51.5) based on their broth productivity and energy yield. Analysis of the broth's yield and physicochemical properties revealed that the by-product extracted from the biomass had a high residual energy value. Additionally, extracting the broth reduces the grass's biomass moisture content, enhancing its calorific value and improving the bagasse quality for combustion in boilers, thus optimizing energy production. This study demonstrates that the promising EG genotypes T_47.1, T_41.2, and T_23.1 presented relevant energy values ranging from 4248.12 to 4304.06 kcal kg- 1 of bagasse and thus are suitable for energy production through direct combustion. The extracted broth is a valuable residual energy source that can be utilized industrially after anaerobic digestion. Future research should focus on the environmental and economic effectiveness of EG broth as an energy source from waste and its potential for biogas production.
- Fractionation of macroalgae carbohydrates using hydrothermal and dilute inorganic salt pretreatments to produce oligosaccharides and furansPublication . Martins, Pedro L.; Andrade, Cristiana; Duarte, Luís; Reis, Alberto; Pereira, Helena; Carvalheiro, FlorbelaABSTRACT: Furans are among the most important compounds derived from biomass, providing conversion pathways for sustainable alternatives to petroleum-based fuels and materials. Furfural, 5-hydroxymethylfurfural (5-HMF), and 5-methylfurfural (5-MF) are furans that can be obtained by carbohydrate dehydration under acidic conditions at elevated temperature and pressure. One of the mechanisms to produce these compounds from lignocellulosic materials relies on prior fractionation of biomass carbohydrates and further dehydration catalysis. However, this is a costly and technically challenging method and it would be advantageous to develop a one-pot conversion mechanism that facilitates simultaneous biomass fractionation and conversion to furans. Ulva lactuca is an alga that has the advantage of being lignin-free and rich in glucose, rhamnose, and xylose, which are ideal for producing 5-HMF, 5-MF, and furfural, respectively. The high diversity of sugar constituents is also relevant for the production of added-value oligosaccharides. Catalysis with inorganic salts has been reported as a successful tool for biomass upgrading to furans when combined with hydrothermal pretreatments, and could provide a cheap and environmentally friendly one-step methodology for furan production. This study therefore aimed to investigate the effect of hydrothermal and dilute acid pretreatments, as well as treatment with inorganic salt solutions (ferric chloride, ferric nitrate, and aluminium nitrate) on U. lactuca biomass to produce oligosaccharides, monosaccharides, and furans (furfural, 5-HMF, and 5-MF). These methods resulted in a maximum sugar solubilization of 65% in non-salt-assisted hydrothermal pretreatments and 84% in salt-assisted hydrothermal pretreatments, with inorganic salt catalysis also resulting in 100% xylose, 36% glucose, and 46% rhamnose conversion to the respective furans.
- Improving bio-oil fractions through fractional condensation of pyrolysis vapors from Eucalyptus globulus biomass residues in a prototype auger reactorPublication . Vilas-Boas, A.C.M.; Tarelho, L.; Marques, C.C.; Moura, J.M.O.; Santos, M.C.; Paradela, Filipe; Nunes, M.I.; Silvestre, A.J.D.ABSTRACT: Bio-oil produced from the pyrolysis of lignocellulosic biomass has potential as a biofuel or chemical precursor. However, its valorization is hindered by its complex composition, high water concentration, and the presence of oxygenated compounds. Operational strategies are therefore required to improve its quality. This study evaluated the technical feasibility of fractional condensation as an alternative to conventional single-stage condensation of vapors produced from pyrolysis of residual Eucalyptus globulus biomass to collect bio-oil fractions with improved properties. The process was carried out using a prototype-scale auger reactor with continuous operation. The fractional condensation system comprised four sequential condensation stages operating at progressively lower temperatures: 140, 100, 80, and 0 degrees C. The collected bio-oil fractions were analyzed in terms of product yields, water separation efficiency, elemental composition, heating value, and the presence of volatile and semi-volatile compounds. The results demonstrated that fractional condensation achieved total bio-oil yields comparable to those obtained with the single-stage condensation system, while enabling the recovery of bio-oil fractions with lower water concentration, higher carbon concentration and increased heating value. Notably, the first condensation stage collected heavy fractions with water concentration between 3 % and 6 %wt., oxygen concentration between 17 % and 21 %wt., and carbon concentration between 69 % and 72 %wt., resulting in O/C molar ratios between 0.17 and 0.22, values close to those of biodiesel. These fractions exhibited lower heating values of up to 31 MJ/kg, surpassing those of conventional liquid biofuels such as biomethanol and bioethanol. These findings highlight the potential of fractional condensation of pyrolysis vapors from residual biomass from Eucalyptus globulus as an effective strategy to produce bio-oil with properties more suitable for direct energy use or as an intermediate feedstock for biofuels synthesis. Further research is recommended to optimize the condensation stages and assess the long-term stability of recovered fractions.
- Industrial Off-Gas Fermentation for Acetic Acid Production: A Carbon Footprint Assessment in the Context of Energy TransitionPublication . Pacheco, Marta; Brac de la Perrière, Adrien; Moura, Patrícia; silva, carlaABSTRACT: Most industrial processes depend on heat, electricity, demineralized water, and chemical inputs, which themselves are produced through energy- and resource-intensive industrial activities. In this work, acetic acid (AA) production from syngas (CO, CO2, and H2) fermentation is explored and compared against a thermochemical fossil benchmark and other thermochemical/biological processes across four main Key Performance Indicators (KPI)—electricity use, heat use, water consumption, and carbon footprint (CF)—for the years 2023 and 2050 in Portugal and France. CF was evaluated through transparent and public inventories for all the processes involved in chemical production and utilities. Spreadsheet-traceable matrices for hotspot identification were also developed. The fossil benchmark, with all the necessary cascade processes, was 0.64 kg CO2-eq/kg AA, 1.53 kWh/kg AA, 22.02 MJ/kg AA, and 1.62 L water/kg AA for the Portuguese 2023 energy mix, with a reduction of 162% of the CO2-eq in the 2050 energy transition context. The results demonstrated that industrial practices would benefit greatly from the transition from fossil to renewable energy and from more sustainable chemical sources. For carbon-intensive sectors like steel or cement, the acetogenic syngas fermentation appears as a scalable bridge technology, converting the flue gas waste stream into marketable products and accelerating the transition towards a circular economy.
- Influence of Inhibitors Generated in Lignocellulosic Hydrolysates from Group of Acids on the Growth of Strains TG1 and Tuner of Escherichia coliPublication . Gaspar, Suelen S.; Alves Ferreira Caturra, Júnia Aparecida; Moniz, Patricia; Silva-Fernandes, Talita; Silvestre, Adriana I. R; Torrado, Ivone; Pesce, Gaetano R.; Carvalheiro, Florbela; Duarte, Luís; Fernandes, Maria da ConceiçãoABSTRACT: Concerns over fossil fuels are of increasing interest in biorefineries that utilize lignocellulosic residues. Besides sugars, inhibitors are formed during biomass pretreatment, including acetic acid (AI) and formic acid (FI), which can hinder microbial fermentation. The TG1 and Tuner strains of Escherichia coli were subjected to various acid concentrations. Samples were taken during fermentation to monitor growth, sugar consumption, biomass yield, and product yield. With increasing AI, the TG1 strain maintained stable growth (0.102 1/h), while xylose consumption decreased, and product formation improved, making it better suited for high-acetic-acid industrial applications. In contrast, the Tuner strain performed better under low-inhibitor conditions but suffered metabolic inhibition at high AI levels, compensating by increasing lactic acid production-an adaptation absent in TG1. However, Tuner showed greater resistance to formic acid stress, sustaining higher growth and ethanol production, whereas TG1 experienced a greater metabolic decline but maintained stable acetic acid output. Both strains experienced inhibition in formic acid metabolism, but TG1 had a higher yield despite its lower overall robustness in formic acid conditions. The use of TG1 for value-added compounds such as ethanol or formic acid may help to avoid the use of chemicals that eliminate acetic acid. Tuner could be used for lactic acid production, especially in hydrolysates with under moderate concentration.
