ES - Resumos em livros de actas
Permanent URI for this collection
Browse
Browsing ES - Resumos em livros de actas by Subject "Dyes"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Charge transport and recombination of dye sensitized 1D nanostructured-TiO2 films prepared by reactive sputteringPublication . Sequeira, S.; Lobato, K.; Torres, Erica; Brites, Maria João; Barreiros, M. Alexandra; Mascarenhas, JoãoDye sensitized solar cells (DSCs) are governed by light absorption, charge injection, electron transport and recombination and electrolyte diffusion. One way to improve the efficiency of these devices is by the design of highly ordered nanostructured semiconductor materials.The advantages can be two-fold: Firstly charge transport within the metal-oxide can be enhanced and hence thicker films can be employed and secondly, the complete permeation with a solid-state hole-transport medium of the sensitized metal-oxide can be facilitated. Nanostructured materials should promote vectorial electron diffusion and have as few recombination sights as possible so as to further enhance electron lifetimes and electron collection efficiencies. These materials should also have a high surface area so as to allow for efficient dye-loading and hence light absorption. Highly ordered TiO2 nanostructured films were prepared by reactive sputtering and their charge transport characteristics evaluated in DSCs. These were compared to DSCs employing mesoporous TiO2 films prepared by doctor blade technique using commercial paste. Charge transport characteristics were evaluated by impedance spectroscopy (IS), incident photon to current conversion efficiencies (IPCE) and current-voltage (iV) curves under simulated AM1.5G irradiation. Film morphology and structural properties were evaluated by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively.
- Synthesis, optical and electrochemical properties of perylenes dyes for solar cells applicationsPublication . Torres, Erica; Sequeira, S.; Berberan-Santos, Mário N.; Brites, Maria JoãoPerylene monoimides or monoanhydrides are being intensively investigated as sensitizers in DSSCs. Keeping only one acceptor group, i.e. imide or anhydride, and introducing a donor group in the 9-position (such as diarylamine) proved to be important in order to obtain a favorable orbital partitioning strength and dipole moment of perylene compounds for DSSCs [1]. One way to control optical and electrochemical properties of perylenes dyes is achieved by functionalizing periand bay positions of perylene core with different substituents. In a simplified view, the peri groups coarsely tune the spectroscopic and electrochemical properties whereas the bay functional groups provide an additional fine tuning [2,3]. Here we report the design and synthesis of new perylene dyes (Figure 1) comprising: (1) a 4-alkoxyphenylamino moiety in the 9-position as a strong donating group, (2) a cyanoacrylic acid as electron acceptor and anchoring group and (3) a triple bond as short and rigid linker between perylene core and the acceptor group [4]. The photophysical properties (i.e. absorption and emission spectra, absorption extinction coefficients, fluorescence quantum yields and lifetime measurements) and electrochemical properties of the new perylene dyes were investigated and all results will be presented and discussed.
