Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Detection of corrosion on silvered glass reflectors via image processingPublication . Wiesinger, Florian; Baghouil, Sarah; Le Baron, Estelle; Collignon, Romain; Santos, Filipa; Cunha Diamantino, Teresa; Catarino, Isabel; Facão, Jorge; Ferreira, Cristina; Páscoa, Soraia; Sutter, Florian; Fernández-García, Aránzazu; Wette, JohannesABSTRACT: A novel characterization technique based on image analysis is presented, intended to complement state-of-the-art reflectometer measurements. The technique is developed by experts from different laboratories (OPAC, AGC, CEA and LNEG), which subsequently conduct two Round Robin experiments on corroded solar reflectors for validation. Regarding the inter-comparability, it is found that parameters like the corrosion spot density or the penetration maximum on coated edges exhibit an average coefficient of variation of 62.6 % and 54.9 %. Better agreement is found for parameters like the total corroded area and the maximum edge corrosion penetration, with coefficients of variation of 14.3 % and 13.4 %, respectively. The developed methodology is further applied during a 68-month lasting outdoor exposure campaign of two types of solar reflectors at two representative sites, one exhibiting corrosivity class C2 and the other C3. On the commercial coating RL1, a total corroded area of 59 mm2 and 426 mm2 is measured after the outdoor exposure on the C2 and the C3 site, respectively, while on the novel low-lead coated reflector RL3 corresponding values are 280 mm2 and 1308 mm2. This shows the superior quality of the coating RL1 in terms of corrosion resistance. Furthermore, the analysis highlights the importance of proper edge sealing for corrosion protection, since corrosion penetration is increased by a factor between 1.3 and 4.0 if the edges are unprotected. The reflectance decrease after the outdoor exposure is regarded as negligible (0.000 - 0.005), thus not permitting any of the conclusions that are made from the novel image analysis technique.
- Hybrid Variable Renewable Power Plants: A Case Study of ROR Hydro ArbitragePublication . Catarino, Isabel; Romão, Inês; Estanqueiro, AnaABSTRACT: Wind and solar energy sources, while sustainable, are inherently variable in their power generation, posing challenges to grid stability due to their non-dispatchable nature. To address this issue, this study explores the synergistic optimization of wind and solar photovoltaic resources to mitigate power output variability, reducing the strain on local grids and lessening the reliance on balancing power in high-penetration renewable energy systems. This critical role of providing stability can be effectively fulfilled by run-of-river hydropower plants, which can complement fluctuations without compromising their standard operational capabilities. In this research, we employ a straightforward energy balance model to analyze the feasibility of a 100 MW virtual hybrid power plant, focusing on the northern region of Portugal as a case study. Leveraging actual consumption and conceptual production data, our investigation identifies a specific run-of-river plant that aligns with the proposed strategy, demonstrating the practical applicability of this approach.