Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- From source to surface: clues from garnet-bearing Carboniferous silicic volcanic rocks, Iberian Pyrite Belt, PortugalPublication . Cravinho, André; Rosa, Diogo; Relvas, Jorge M.R.S.; Solá, A. Rita; Pereira, Inês; Paquette, J. L.; Borba, M. L.; Tassinari, Colombo C. G.; Chew, David; Drakou, Foteini; Breiter, Karel; Araújo, VítorABSTRACT: This work investigates the relationships between partial melting, melt extraction, pluton growth and silicic volcanism in garnet-bearing felsic volcanic rocks that were extruded in the Iberian Pyrite Belt, at ca. 345 Ma. The garnets are of peritectic origin, displaying textural and chemical features of disequilibrium crystallization during partial melting reactions involving biotite at high temperatures (up to 870 degrees C) in the middle-lower crust. Major element composition suggests compositional equilibrium with the entrained and pinitized peritectic cordierite, but reveals some subsequent homogenization by diffusion. Trace element maps and spot analyses of garnet show, nonetheless, significant trace element variations, reflecting biotite and Y-REE-P-rich accessory phase breakdown during partial melting reactions. Peritectic garnet and cordierite growth resulted in the preservation of Th- and Y-rich prograde suprasolidus monazite, which constrains the timing of partial melting of the metapelitic protolith at ca. 356.8 +/- 2.4 Ma. The zircon cargo further shows that a significant amount of zircon crystals from previously crystallized felsic melts were also remobilized and erupted. These were likely stored in an upper crustal pluton that grew episodically since ca. 390 Ma during voluminous melt generation periods within the middle to lower crust, which also resulted in voluminous volcanism. The geochemical trends of the felsic volcanic rocks reflect the entrainment of xenoliths of peritectic garnet, cordierite and feldspar, and as such, the garnet-bearing felsic volcanic rocks represent an erupted mixture of a lower-temperature (ca. 770 degrees C) silicic melt and autocrysts, and peritectic phases and zircon crystals from previously crystallized and stored felsic melts.
- Alluvial nodular monazite in Monfortinho (Idanha-a-Nova, Portugal): Regional distribution and genesisPublication . Salgueiro, Rute; Inverno, Carlos; de Oliveira, Daniel Pipa Soares; Guimarães, Fernanda; Lencastre, José; Rosa, DiogoABSTRACT: This work constitutes a contribution to the knowledge on the occurrence of nodular monazite in the Monfortinho (Idanha-a-Nova) alluviums and its genesis. A new edition of the alluvial nodular monazite regional distribution map is presented, underlining its wide occurrence and preferential concentration in the north-western and central zones of this region. The assessment of the geological and environmental evolution during Neoproterozoic-Palaeozoic and Caenozoic times and alluvial nodular monazite accumulation seems to provide a direct association between the presence of the Ordovician rocks, in particular the radioactive (carrying radioactive heavy minerals) quartzite (one of the most probable original sources) and Caenozoic sedimentary rocks (most probably the secondary source). Nevertheless, the Slate-Greywacke Complex cannot be excluded as a host rock for nodular monazite as well. Alluvial heavy mineral concentrates include: iron oxide/hydroxide, ilmenite, tourmaline, nodular monazite, monazite, xenotime, zircon, rutile, anatase, brookite, apatite, andalusite, gold, cassiterite and topaz. There is a significant REE enrichment in these concentrates (up to> 32,000 mg/kg), mainly in LREE-MREE. The contents in Ce and Th, Th and REE and Ce and La showed good correlation (0.97, 0.96 and 0.99, respectively), reflecting mainly the striking presence of nodular monazite, as can be proved by the similarity among NASCN patterns of this mineral and concentrates. In Monfortinho there are two distinct alluvial nodular monazite populations: 1) distal pre-deformation nodules generation, from the central western area, mostly ellipsoidal to discoidal, with irregular not orientated probable detrital mineral inclusions; and 2) proximal generation, in the northern area near the Ordovician rocks, with smaller grains, with mostly irregular surfaces. Diagenetic/low metamorphic pre-deformation distal Monfortinho nodules population growth can be recognised and characterised by the encompassing of irregular unoriented mineral inclusions of the host matrix rock; preferential incorporation of MREE over other REE in the core nodules, consistent with diagenetic MREE-rich environmental/mineralized fluids supplied by the dehydration of Variscan sedimentary marine sequences with phosphatic rocks, at the start of nodule formation. The slight increase in Ca towards the nodule rims denotes a relative increase in fluid salinity during nodule growth, consistent with the ineffectiveness of metamorphic dewatering in dissolving the significant salt content of those marine sequence(s); Th increment in nodule rims points to the temperature increment at this stage; its moderately to pronouncedly negative Eu anomalies and the general involvement of the cheralitic substitution mechanism are characteristic of metamorphic monazites. Monfortinho and other published data suggest that in the beginning of nodular monazite formation the fractionation (La/Sm) N tended to be lower than that of the original source (detrital relic mineral/seawater), very similar to primary synsedimentary apatite or to monazite nodules interpreted to have precipitated directly from seawater. At the end the fractionation values can be substantially higher than those and may be dependent on the conditions established during the different geologic environments.