Repository logo
 

Search Results

Now showing 1 - 4 of 4
  • Toxicity of Ashes Produced During the Combustion and Co-combustion of Coal and Meat and Bone Meal in a Fluidized- Bed Reactor
    Publication . Barbosa, Rui; Lapa, Nuno; Lopes, Helena; Gulyurtlu, Ibrahim; Mendes, Benilde
    The replacement of fossil fuels by renewable fuels can contribute to improve the environmental performance of the power production and to move forward in the sustainability way. The experience has shown that the availability of alternative fuels can be an obstacle for its extensive use for energy production, since biomass is not always available. The use of non-hazardous wastes may be a good alternative to biomass, mainly if they are economically unattractive for recycling or if they present a high cost for land-filling. The co-firing of non-hazardous wastes with coal is, therefore, a subject of great interest for the sustainability of energy production and the reduction of the emissions of fossil greenhouse gases. The use of these wastes for energy is promising if they combine well with other fuels during the conversion process for energy production and have no negative effect on the combustion system, on the ash quality and on the gaseous emissions.
  • Biomass fly ashes as low-cost chemical agents for Pb removal from synthetic and industrial wastewaters
    Publication . Barbosa, Rui; Lapa, Nuno; Lopes, Helena; Gunther, Annika; Dias, Diogo; Mendes, Benilde
    The main aim of this work was to study the removal efficiency of Pb from synthetic and industrial wastewaters by using biomass fly ashes. The biomass fly ashes were produced in a biomass boiler of a pulp and paper industry. Three concentrations of Pb2+ were tested in the synthetic wastewater (1, 10 and 1000 mg Pb/L). Moreover, two different wastewaters were collected in an industrial wastewater treatment plant (IWWTP) of an industry of lead-acid batteries: (i) wastewater of the equalization tank, and (ii) IWWTP effluent. All the wastewaters were submitted to coagulation–flocculation tests with a wide range of biomass fly ashes dosage (expressed as Solid/Liquid – S/L – ratios). All supernatants were characterized for chemical and ecotoxicological parameters. The use of biomass fly ashes has reduced significantly the Pb concentration in the synthetic wastewater and in the wastewaters collected in the IWWTP. For example, the definitive coagulation–flocculation assays performed over the IWWTP effluent presented a very low concentration of Pb (0.35 mg/L) for the S/L ratio of 1.23 g/L. Globally, the ecotoxicological characterization of the supernatants resulting from the coagulation–flocculation assays of all wastewaters has indicated an overall reduction on the ecotoxicity of the crude wastewaters, due to the removal of Pb.
  • Use of chemical fractionation to understand partitioning of biomass ash constituents during co-firing in fluidized bed combustion
    Publication . Teixeira, P. Alexandra; Lopes, Helena; Gulyurtlu, Ibrahim; Lapa, Nuno
    Three species of biomass origin (straw pellets, olive cake and wood pellets) and two coals from different countries (Coal Polish and Coal Colombian) have been studied to understand the fate of their ash forming matter during the combustion process and to investigate the influence of co-firing biomass with coal. Three different approaches to investigate the ash behaviour were employed: (1) chemical fractionation analysis to evaluate the association/reactivity of ash forming elements in the fuels as a prediction tool, (2) establishment of elements partitioning in ash streams produced in the combustion and co-combustion trials, and (3) evaluation of enrichment factors of elements in the ash streams. The chemical fractionation analysis was applied to all fuels used to evaluate how the association/reactivity of elements making up ash may influence their behaviour during combustion. Combustion tests were carried out on a pilot scale fluidized bed combustor (FBC). Four ash streams were obtained at different locations. The uncertainty of measurements was estimated allowing a critical evaluation of mass balances over the combustion system and the partitioning of elements in the ash streams. The enrichment factors of elements in the several ash streams were estimated, incorporating uncertainties associated with analytical measurements. Results obtained showed that for FBC the relation between the chemical fractionation and the experimental partitioning is strongly affected by elutriation of particles. The element enrichment factor estimated for each ash stream, using Al as a reference element, revealed better correlations with the elements reactivity obtained by chemical fractionation because it overcomes particles elutriation effects. Nevertheless, it was observed that the reactivity estimated by chemical fractionation could not be solely interpreted as tendency of the elements to volatilize on FBC system, as reaction in bed zone of boiler may also occur retaining reactive elements.
  • Evaluation of slagging and fouling tendency during biomass co-firing with coal in a fluidized bed
    Publication . Teixeira, P. Alexandra; Lopes, Helena; Gulyurtlu, Ibrahim; Lapa, Nuno; Abelha, Pedro
    Over the last decades, several indices based on ash chemistry and ash fusibility have been used to predict the ash behaviour during coal combustion, namely, its tendency for slagging and fouling. However, due to the physicalechemical differences between coals and biomass, in this work only the applicability of an ash fusibility index (AFI) to the combustion and co-combustion of three types of biomass (straw pellets, olive cake and wood pellets) with coals was evaluated. The AFI values were compared with the behaviour of ash during combustion in a pilot fluidized bed and a close agreement was observed between them. For a better understanding of the mechanisms associated with bed ash sintering, they were evaluated by SEM/EDS and the elements present on the melted ash were identified. Evidences of different sintering mechanisms were found out for the fruit biomass and herbaceous biomass tested, depending on the relative proportions of problematic elements. The particles deposited on a fouling probe inserted in the FBC were analyzed by XRD and the differences between the compounds identified allowed concluding that the studied biomasses present different tendencies for fouling. Identification of KCl and K2SO4 in the deposits confirmed the higher tendency for fouling of fruit biomass tested rather than wood pellets.