Repository logo
 

Search Results

Now showing 1 - 9 of 9
  • Nanodiamond dispersions in nanostructured metals
    Publication . Nunes, D.; Correia, J.B.; Carvalho, Patricia Almeida
  • Tungsten microstructural changes induced by ISTTOK plasma discharges
    Publication . Mateus, R.; Carvalho, Patricia Almeida; Correia, J.B.; Nunes, D.; Gomes, R. B.; Duarte, P.; Fernandes, H.; Silva, C.; Alves, E.
  • Multiscale Copper-uDiamond Nanostructured Composites
    Publication . Nunes, D.; Livramento, Vanessa; Fernandes, H.; Silva, C.; Shohoji, Nobumitsu; Correia, J.B.; Carvalho, Patricia Almeida
    Nanostructured copper-diamond composites can be tailored for thermal management applications at high temperature. A novel approach based on multiscale diamond dispersions is proposed for the production of this type of materials: a Cu-nDiamond composite produced by high-energy milling is used as a nanostructured matrix for further dispersion of micrometer sized diamond. The former offers strength and microstructural thermal stability while the latter provides high thermal conductivity. A series of Cu-nDiamond mixtures have been milled to define the minimum nanodiamond fraction suitable for matrix refinement and thermal stabilization. A refined matrix with homogenously dispersed nanoparticles could be obtained with 4 at.% nanodiamond for posterior mixture with ƒÝDiamond and subsequent consolidation. In order to define optimal processing parameters, consolidation by hot extrusion has been carried out for a Cu-nDiamond composite and, in parallel, for a mixture of pure copper and ÝDiamond. The materials produced were characterized by X-ray diffraction, scanning and transmission electron microscopy and microhardness measurements.
  • Nickel–carbon nanocomposites: Synthesis, structural changes and strengthening mechanisms
    Publication . Nunes, D.; Vilarigues, M.; Correia, J.B.; Carvalho, Patricia Almeida
    The present work investigates Ni–nanodiamond and Ni–graphite composites produced by mechanical synthesis and subsequent heat treatments. Processing of nickel–carbon nanocomposites by this powder metallurgy route poses specific challenges, as carbon phases are prone to carbide conversion and amorphization. The processing window for carbide prevention has been established through X-ray diffraction by a systematic variation of the milling parameters. Transmission electron microscopy confirmed the absence of carbide and showed homogeneous particle distributions, as well as intimate bonding between the metallic matrix and the carbon phases. Ring diffraction patterns of chemically extracted carbon phases demonstrated that milled nanodiamond preserved crystallinity, while an essentially amorphous nature could be inferred for milled graphite. Raman spectra confirmed that nanodiamond particles remained largely unaffected by mechanical synthesis, whereas the bands of milled graphite were significantly changed into the typical amorphous carbon fingerprint. The results on the annealed nanocomposites showed that milling with Ni accelerated graphitization of the carbon phases during heat treatments at 973 and 1073 K in both composites. At the finer scales, the nanocomposites exhibited a remarkable microhardness enhancement (∼70%) compared with pure nanostructured nickel. The Hall–Petch relation and the Orowan–Ashby equation are used to discuss strengthening mechanisms and the load transfer ability to the reinforcing particles.
  • Microstructural characterization of the ODS Eurofer 97 EU-batch
    Publication . Mateus, R.; Carvalho, Patricia Almeida; Nunes, D.; Alves, L. C.; Franco, N.; Correia, J.B.; Alves, E.
    Four as-processed forms (Plate 16, Plate 6, Rod 20 and Rod 12.5) of the ODS Eurofer 97 EU-batch produced under different thermomechanical conditions have been investigated by scanning nuclear microprobe, scanning and transmission electron microscopy, energy dispersive X-ray spectroscopy, electron backscattered diffraction, hightemperature X-ray diffraction and microhardness measurements. The materials presented a ferritic microstructure with a homogeneous distribution of Y. The thicker plate presented a fine carbide dispersion while the other forms showed carbide morphologies corresponding to pseudo-pearlitic and pseudo-bainitic transformations with wellmatched hardness values. Hot rolling induced crystallographic textures of the {101}<101> type, rotary swaging resulted in a complex texture, and extrusion produced a strong <101> fiber texture. X-ray diffraction experiments at high temperature showed that at a cooling rate of 5 ºC/min the complete austenite-to-ferrite transformation occurs between 760 and 750 ºC compromising the material quenchability.
  • Production of Cu/Diamond composites for first-wall heat sinks
    Publication . Nunes, D.; Correia, J.B.; Carvalho, Patricia Almeida; Shohoji, Nobumitsu; Silva, C.; Fernandes, H.; Alves, L. C.; Hanada, K.; Osawa, E.
    Due to their suitable thermal conductivity and strength copper-based materials have been considered appropriate heat sinks for first wall panels in nuclear fusion devices. However, increased thermal conductivity and mechanical strength are demanded and the concept of property tailoring involved in the design of metal matrix composites advocates for the potential of nanodiamond dispersions in copper. Copper-nanodiamond composite materials can be produced by mechanical alloying followed by a consolidation operation. Yet, this powder metallurgy route poses several challenges: nanodiamond presents intrinsically difficult bonding with copper; contamination by milling media must be closely monitored; and full densification and microstructural homogeneity should be obtained with consolidation. The present line of work is aimed at an optimization of the processing conditions of Cu-nanodiamond composites. The challenges mentioned above have been addressed, respectively, by incorporating chromium in the matrix to form a stable carbide interlayer binding the two components; by assessing the contamination originating from the milling operation through particle-induced X-ray emission spectroscopy; and by comparing the densification obtained by spark plasma sintering with hot-extrusion data from previous studies.
  • Synergistic helium and deuterium blistering in tungsten–tantalum composites
    Publication . Dias, Marta; Mateus, R.; Catarino, N.; Franco, N.; Nunes, D.; Correia, J.B.; Carvalho, Patricia Almeida; Hanada, K.; Sârbu, C.; Alves, E.
    Tungsten–tantalum composites with 10 and 20 at.% Ta were prepared by ball milling W powder with Ta fibers and by consolidating the milled materials with spark plasma sintering. The composites were implanted at room temperature with He+ (30 keV with a fluence 5 1021 at/m2) and/or D+ (15 keV with a fluence 5 x 1021 at/m2) ion beams. The materials were studied by scanning and high-resolution transmission electron microscopy, both coupled with energy dispersive X-ray spectroscopy, and by X-ray diffraction, Rutherford backscattering spectrometry and nuclear reaction analysis. The microstructure observations revealed that the milling operation resulted in severe fragmentation of the Ta fibers. Furthermore, during the consolidation process the Ta phase acted as oxygen getter and reduced theWoxide present in the original material. The surface of the tungsten–tantalum composites implanted with D+ remained essentially unaltered, while the materials implanted with He+ evidenced blisters on the Ta-rich regions. D retention in the composites increased with He+ pre-implantation.
  • Tungsten–nanodiamond composite powders produced by ball milling
    Publication . Nunes, D.; Livramento, Vanessa; Mardolcar, U. V.; Correia, J.B.; Carvalho, Patricia Almeida
    The major challenge in producing tungsten–nanodiamond composites by ball milling lies in successfully dispersing carbon nanoparticles in the metallic matrix while keeping carbide formation at a minimum. Processing windows for carbide minimization have been established through systematic variation of the nanodiamond fraction, milling energy and milling time. Materials characterization has been carried out by X-ray diffraction, scanning and transmission electron microscopy and microhardness testing. Nanostructured matrices with homogeneously dispersed particles that preserved the diamond structure have been produced. Differential thermal analysis has been used to evaluate the composites thermal stability.
  • Novel approach to plasma facing materials in nuclear fusion reactors
    Publication . Livramento, Vanessa; Correia, J.B.; Nunes, D.; Carvalho, Patricia Almeida; Fernandes, H.; Silva, C.; Hanada, K.; Shohoji, Nobumitsu; Osawa, E.
    A novel material design in nuclear fusion reactors is proposed based on W-nDiamond nanostructured composites. Generally, a microstructure refined to the nanometer scale improves the mechanical strength due to modification of plasticity mechanisms. Moreover, highly specific grainboundary area raises the number of sites for annihilation of radiation induced defects. However, the low thermal stability of fine-grained and nanostructured materials demands the presence of particles at the grain boundaries that can delay coarsening by a pinning effect. As a result, the concept of a composite is promising in the field of nanostructured materials. The hardness of diamond renders nanodiamond dispersions excellent reinforcing and stabilization candidates and, in addition, diamond has extremely high thermal conductivity. Consequently, W-nDiamond nanocomposites are promising candidates for thermally stable first-wall materials. The proposed design involves the production of WAV-nDiamondAV-Cu/Cu layered castellations. The W, W-nDiamond and W-Cu layers are produced by mechanical alloying followed by a consolidation route that combines hot rolling with spark plasma sintering (SPS). Layer welding is achieved by spark plasma sintering. The present work describes the mechanical alloying processsing and consolidation route used to produce W-nDiamond composites, as well as microstructural features and mechanical properties of the material produced Long term plasma exposure experiments are planned at ISTTOK and at FTU (Frascati).