Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 3 of 3
  • Simulation, Structural, Thermal and Mechanical Properties of the FeTiTaVW High Entropy Alloy
    Publication . Martins, Ricardo; Gonçalves, António Pereira; Correia, J.B.; Galatanu, Andrei; Alves, E.; Tejado, Elena; Pastor, Jose Ygnacio; Dias, Marta
    ABSTRACT: Developing new materials to be applied in extreme environments is an opportunity and a challenge for the future. High entropy alloys are new materials that seem promising approaches to work in nuclear fusion reactors. In this work, FeTaTiVW high entropy alloys were developed and characterized with Molecular Dynamic and Hybrid Molecular Dynamic Monte Carlo simulations. The simulation results show that phase separation originates a lower potential energy per atom and a high level of segregation compared to those of a uniform solid solution. Moreover, the experimental diffractogram of the milled powder shows the formation of a body-centred cubic-type structure and the presence of TiO2. In addition, the microstructure of the consolidated material evidenced three phases: W-rich, Ti-rich, and a phase with all the elements. This phase separation observed in the microstructure agrees with the Hybrid Molecular Dynamic Monte Carlo simulation. Moreover, the consolidated material's thermal conductivity and specific heat are almost constant from 25 degrees C to 1000 degrees C, and linear expansion increases with increasing temperature. On the other hand, specific heat and thermal expansion values are in between CuCrZr and W values (materials chosen for the reactor walls). The FeTaTiVW high entropy alloy evidences a ductile behaviour at 1000 degrees C. Therefore, the promising thermal properties of this system can be attributed to the multiple phases and systems with different compositions of the same elements, which is exciting for future developments.
  • The effects of mechanical alloying on the physical and thermal properties of CuCrFeTiV alloy
    Publication . Antão, Francisco; Dias, Marta; Correia, J.B.; Galatanu, Andrei; Galatanu, M.; Mardolcar, U. V.; Myakush, A.; Cruz, M. M.; Casaca, António; Silva, R.C. da; Alves, E.
    ABSTRACT: The present work reports the production and key properties of the CuCrFeTiV high entropy alloy synthetized mechanical alloying and spark plasma sintering. The milled powders and the as-sintered samples were analysed through scanning electron microscopy, coupled with energy dispersive X-ray spectroscopy and particle induced X-ray emission. Magnetic properties together with electrical resistivity, thermal conductivity, specific heat differential thermal analysis were also evaluated on the consolidated samples. The powders reveal an increasing content in iron as the millings are prolonged up to 20 h. The elemental composition of the sintered alloy, determined through particle induced X-ray emission, confirms the final composition after mechanical alloying with an increase of iron and a decrease in the remaining elements. Furthermore, although the alloy presents electrical resistivity typical of a high entropy alloy, a ferromagnetic behaviour was found, consistently with major Fe content as detected in prior observations. Finally, thermal measurements show that this CuCrFeTiV entropy alloy possesses thermal properties suitable for its potential use as thermal barriers.
  • Behavior of Cu-Y2O3 and CuCrZr-Y2O3 composites before and after irradiation
    Publication . Martins, Ricardo; Antão, Francisco; Correia, J.B.; Tejado, Elena; Pastor, Jose Ygnacio; Galatanu, Andrei; Almeida Carvalho, Patricia; Alves, E.; Dias, Marta
    ABSTRACT: The Cu-Y2O3 and CuCrZr-Y2O3 materials have been devised as thermal barriers in nuclear fusion reactors. It is expected that in the nuclear environments, the materials should be working on extreme conditions of irradiation. In this work the Cu-Y2O3 and CuCrZr-Y2O3 were prepared and then irradiated in order to understand the surface irradiation resistance of the material. The composites were prepared in a glove box and consolidated with spark plasma sintering. The microstructures revealed regions of Y2O3 dispersion and Y2O3 agglomerates both in the Cu matrix and in the CuCrZr. The irradiated samples did not show any surface modification indicating that the materials seem to be irradiation resistant in the present situation. The thermal conductivity values for all the samples measured are lower than pure Cu and higher than pure W, however are higher than those expected, and therefore, the application of these materials as thermal barriers is compromised.