Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Accelerated aging tests for solar absorber coatingsPublication . Cunha Diamantino, Teresa; Gonçalves, Rita; Páscoa, Soraia; Alves, Isabel Nascimento; Chambino, Teresa; Ferreira, Cristina; Carvalho, Maria JoãoABSTRACT: The need of a higher role of solar energy within the energy mix in the coming decades obliges the systems to increase their performance and reliability. It is demanded that the solar absorbers, as the key component of solar thermal systems, should be low cost with high efficiency for extended lifetimes under different kinds of environments. Commercially, there are two different types of solutions as selective solar absorbers coatings: coatings obtained by physical vapor deposition (PVD) and by paint coatings (PC). These coatings present different physical and chemical characteristics. Therefore, it is important to know how these coatings degrade over time in different environments. Results obtained with two different PVD coatings and three PC, under different accelerated aging tests, are presented. The aging tests performed included different environmental stress corrosion conditions: temperature, humidity, chlorides, sulphur dioxide and nitrogen oxides. Cyclic variation of corrosion promoting gases (sulfur dioxide and nitrogen dioxide), higher humidity, salt spraying and drying seem to be an aging test that reflects the different environments where the solar thermal collectors are exposed. In addition to the contaminants, drying / wetting cycles also play an important role in degradation mechanisms of absorber coatings.
- Assessment of durability of solar absorbers : performance criterionPublication . Páscoa, Soraia; Carvalho, Maria João; Cunha Diamantino, TeresaABSTRACT: Solar fraction, Fs, defined as the ratio between the delivered energy from a solar domestic hot water (DHW) system and the load (thermal energy necessary to satisfy domestic water heating needs), is widely accepted as performance indicator for this type of systems. Considering solar absorptance αs and thermal emittance εt as the most relevant characteristics of solar absorbers, the relation between the depreciation of these optical properties and depreciation of Fs was used by Hollands et al (1992) to define a performance criterion (PC) for assessment of long-term behavior and service life of selective solar absorbers. The PC was established mainly for solar DHW systems working with solar fractions lower than 50%. In this work, systems working with solar fractions higher than 50%, in climates of south of Europe, are considered and the suitability of solar fraction as performance indicator to develop an adequate PC is studied. As a first step simulations of thermal performance of systems using an in-house software were performed for a reduction of 5% and 10% of Fs. In ISO 22975-3, solar fraction Fs degradation must be lower than 5% to guarantee 25 years of service life for DHW system. The results showed that the parameters obtained to define the PC were incoherent considering solar fractions higher than 50%. In a second step, supplied energy was considered as performance indicator and using similar methodology as Hollands et al (1992), but using as performance indicator energy supplied by the solar system, the PC for systems working with solar fractions higher than 50%, in climates of south of Europe, was establish. The results showed that this is not significantly different from the PC considered in ISO 22975-3.