Loading...
4 results
Search Results
Now showing 1 - 4 of 4
- Estratégias fotónicas para fotovoltaico : novos avanços para além da óticaPublication . Mendes, Manuel Joao; Sanchez-Sobrado, O.; Haque, S.; Centeno, Pedro; Alexandre, Miguel; Ribeiro, Guilherme; Boane, J.; Mateus, T.; Mouquinho, Ana; Menda, U.D.; Águas, H.; Fortunato, Elvira; Martins, RodrigoRESUMO: Estruturas fotónicas com tamanhos comparáveis aos comprimentos de onda da luz solar são as soluções preferenciais para melhorar a eficiência de dispositivos fotovoltaicos através de aprisionamento de luz. As micro-estruturas fotónicas aqui desenvolvidas operam no regime de ótica de ondas, pelo que foram construídos modelos eletromagnéticos que permitiram encontrar os parâmetros ótimos para aplicação no contacto frontal de diferentes tipos de tecnologias, nomeadamente em células de filme fino baseadas em silício ou perovskite. Desta forma, foram obtidas diferentes arquiteturas fotónicas de células, demonstrando melhoras de até 50% na eficiência relativamente a células de referência planas. Os resultados mostram que as vantagens da aplicação de estruturas fotónicas não estão só limitadas a ganhos óticos de melhora da absorção, mas também possibilitam outros benefícios importantes tais como: ganhos elétricos devido à melhora dos contactos transparentes, e melhor desempenho em condições ambientais devido a um encapsulamento avançado dos dispositivos que confere até propriedades de auto-limpeza dos mesmos.
- Ultrafast low-temperature crystallization of solar cell graded formamidinium-cesium mixed-cation lead mixed-halide perovskites using a reproducible microwave-based processPublication . Brites, Maria João; Barreiros, M. Alexandra; Corregidor, V.; Alves, L. C.; Pinto, Joana V.; Mendes, Manuel Joao; Fortunato, Elvira; Martins, Rodrigo; Mascarenhas, JoãoABSTRACT: The control of morphology and crystallinity of solution-processed perovskite thin-films for solar cells is the key for further enhancement of the devices’ power conversion efficiency and stability. Improving crystallinity and increasing grain size of perovskite films is a proven way to boost the devices’ performance and operational robustness, nevertheless this has only been achieved with high-temperature processes. Here, we present an unprecedented low-temperature (<80 °C) and ultrafast microwave (MW) annealing process to yield uniform, compact, and crystalline FA0.83Cs0.17Pb(I(1–x)Brx)3 perovskite films with full coverage and micrometer-scale grains. We demonstrate that the nominal composition FA0.83Cs0.17PbI1.8Br1.2 perovskite films annealed at 100 W MW power present the same band gap, similar morphology, and crystallinity of conventionally annealed films, with the advantage of being produced at a lower temperature (below 80 °C vs 185 °C) and during a very short period of time (∼2.5 min versus 60 min). These results open new avenues to fabricate band gap tunable perovskite films at low temperatures, which is of utmost importance for Mechanically flexible perovskite cells and monolithic perovskite based tandem cells applications.
- Ultrafast low-temperature crystallization of solar cell graded formamidinium-cesium mixed-cation lead mixed-halide perovskites using a reproducible microwave-based process [Poster]Publication . Brites, Maria João; Barreiros, M. Alexandra; Corregidor, V.; Alves, L. C.; Pinto, Joana V.; Mendes, Manuel Joao; Fortunato, Elvira; Martins, Rodrigo; Mascarenhas, João
- Investigation of single phase Cu2ZnSnxSb1-xS4 compounds processed by mechanochemical synthesisPublication . Neves, Filipe; Stark, A.; Schell, N.; Mendes, Manuel Joao; Aguas, H.; Fortunato, Elvira; Martins, Rodrigo; Correia, J.B.; Joyce, AABSTRACT: The copper zinc tin sulfide (CZTS) compound is a promising candidate as an alternative absorber material for thin-film solar cells. In this study, we investigate the direct formation of Cu1.92ZnSnx(Sb1-x)S-4 compounds [CZT(A)S], with x = 1, 0.85, 0.70, and 0.50, via a mechanochemical synthesis (MCS) approach, starting from powders of the corresponding metals, zinc sulfide, and sulfur. The thermal stability of the CZT(A)S compounds was evaluated in detail by in situ synchrotron high-energy x-ray diffraction measurements up to 700 degrees C. The CZT(A)S compounds prepared via MCS revealed a sphalerite-type crystal structure with strong structural stability over the studied temperature range. The contribution of the MCS to the formation of such a structure at room temperature is analyzed in detail. Additionally, this study provides insights into the MCS of CZTS-based compounds: the possibility of a large-scale substitution of Sn by Sb and the production of single phase CZT(A)S with a Cupoor/Zn-poor composition. A slight increase in the band gap from 1.45 to 1.49-1.51 eV was observed with the incorporation of Sb, indicating that these novel compounds can be further explored for thin-film solar cells.