Repository logo
 
Loading...
Profile Picture
Person

SHOHOJI, Nobumitsu

Search Results

Now showing 1 - 3 of 3
  • Mechanical properties of dense cordierite discs sintered by solar radiation heating
    Publication . Oliveira, Fernando Almeida Costa; Shohoji, Nobumitsu; Martinez, Diego; Fernandes, Jorge Cruz; Rodriguez, Jose; Rosa, Luís Guerra; Cañadas, Inmaculada
    Consolidation of cordierite disc specimens was undertaken under concentrated solar beam in a solar furnace at PSA (Plataforma Solar de Almerıá). Satisfactory extent of densification was achieved by the present solar-sintering experiment. The mechanical properties measured for the solar-sintered cordierite test pieces were; density ¼ 2:45 0:02 g/cm3, Vickers microhardness HV ¼ 7:31 0:29 GPa, Young’s modulus E ¼ 97 5 GPa, shear modulus G ¼ 38 2 GPa, Poisson ratio ¼ 0:27 0:01, fracture toughness KIC ¼ 1:50 0:15 MPa m1=2 and modulus of rupture evaluated by ring-on-ring test MORROR ¼ 57:8 13:7 MPa which were comparable to those of the counterparts sintered by conventional industrial gas furnace.
  • Effects of NaBH4 additions on hydrogen absorption by nanostuctured FeTi powders
    Publication . Marques, Sofia Figueiredo; Correia, J.B.; Shohoji, Nobumitsu; Rangel, C. M.; Paiva Luís, Teresa
    Hydrogen is nowadays considered as one of the most promising fuels for the future transportation market, since it is highly energetic and its combustion products are non-toxic. There are however some inherent problems related to its handling and storage that makes its implementation difficult in the energy market [1]. One way of storing hydrogen is in form of intermetallic hydrides. Some intermetallics can store large amounts of hydrogen in their interstitial sites and, in some cases, reversible equilibrium absorption/desorption cycles might be realized near ambient temperature and normal pressure. FeTi is an intermetallic compound that is being widely studied for hydrogen storage purposes. This system has one of the highest volumetric storage capacities and can be produced at low cost [2,3]. However, the FeTi alloy prepared through conventional metallurgical process requires activation treatments at elevated temperature. It has been shown previously that the nanostructured FeTi can be activated at room temperature with the mechanical alloying of pure metallic constituents, Fe and Ti, with NaBH4 [4]. In this work nanostructured FeTi based powders were produced by mechanical alloying, and the effects of adding different amounts of NaBH4 on the hydrogen absorption capacity and on the agglomeration of the powders were studied. The effect of handling powders in a glovebox with oxygen free atmosphere or in atmospheric ambient condition was also examined. Several parameters of the as-milled powders were controlled. Among the characterization performed are phase identification and crystallite size determinations by X-ray diffraction, micro hardness measurements, scanning electron microscopy and absorption isotherms determinations.
  • Carbide phases synthesised from C/Mo powder compacts at specified sub-stoichiometric ratios by solar radiation heating to temperatures between 1600 C and 2500 C
    Publication . Granier, Bernard; Shohoji, Nobumitsu; Almeida Costa Oliveira, Fernando; Magalhães, Teresa; Fernandes, Jorge Cruz; Rosa, Luís Guerra
    There are a number of distinguishable carbide phases in the binary Mo-C system depending on C/Mo ratio as well as on temperature. In a preceding work published in this journal, carbide formation performance for graphite/molybdenum powder mixtures at specified levels of substoichiometric C/Mo atom ratio (C/Mo = 1/1, 3/4, 2/3 and 1/2) by exposure to concentrated solar radiation in a solar furnace at PROMESCNRS in Odeillo (France) was reported at a target temperature 1900 C. In the present work, the similar carbide synthesis experiments were carried out at 1600 C as well as at temperature exceeding 2500 C. The target temperature setting was adjusted by controlling the downward deviation of the test piece top surface position from the exact focal spot of the parabolic mirror concentrator located above. In this solar furnace at PROMES-CNRS, temperature of the test piece was raised from ambient temperature to the target temperature within fractions of a second. Reaction products detected were hexagonal -MoC1 x and -Mo2C (high temperature sub-carbide phase) depending on the C/Mo ratio in the starting material as well as on the processing temperature. No evidence of formation of cubic -MoC1 x was detected by X-ray diffraction analysis for any test piece examined.