Repository logo
 

Search Results

Now showing 1 - 4 of 4
  • Aerogel cathodes for electrochemical CO2 reduction [Comunicação oral]
    Publication . Messias, Sofia; Fialho, Maria T.; Paninho, A. B.; Branco, Luis C; Nunes, A. V. M.; Martins, Rodrigo; Mendes, Manuel Joao; Nunes, D.; Rangel, C. M.; Machado, Ana
    ABSTRACT: Electrochemical reduction of carbon dioxide powered by renewable energy to produce fuels and chemicals is a technology with potential to contribute to an economy based on a carbon neutral cycle. The development of cost effective, highly active and stable catalysts for CO2 electroreduction is being intensively researched. This work addresses the development of aerogel supported copper-zinc bimetallic catalysts[1]. Aerogels are substances with exceptional properties with many current and potential applications [2-3]. Due to their high surface area, stability in corresponding gaseous or liquid phases, transport through large meso and macropores they are especially suited as catalysts and carrier materials for catalysis and, when electric conductive for electro-catalysis. Aerogels prepared by the sol gel method and impregnated with metallic particles will be tested as cathodes for the co-electrolysis of CO2 and water to produce syngas at temperatures near room temperature and high-pressure. In this way this process can be directly coupled to other high pressure processes, such as Fischer-Tropsch that use high pressure syngas as raw material. Productivities and faradaic efficiencies will be evaluated. The characterization of the aerogel-based cathodes will be undertaken by surface analysis techniques. BET surface areas will be determined. The catalytic cathodes will be tested in an ionic liquid-based electrolyte as a way to increase current densities, due to the high CO2 solubilities exhibited by some ionic liquid families.
  • Advances in electrochemical reduction of CO2 in ionic liquid-based electrolytes [Resumo]
    Publication . Machado, Ana; Messias, Sofia; Paninho, A. B.; Nunes, A. V. M.; Rangel, C. M.; Branco, Luis C
    ABSTRACT: Electrochemical reduction of CO2 was for the first time reported in 1870 [1], but it was only after 2010 that this field was the subject of intense research efforts. The use of renewable electricity to convert CO2 into products that are currently derived from fossil products and have high carbon footprint will certainly make this technology one pillar of a sustainable chemical industry. The scepticism towards the availability of cost effective products derived from CO2 electro-reduction that customers will be willing to buy has shifted to the belief that they can be commercially viable. Turning electrochemical CO2 reduction into a commercial technology will depend on economics, on the price of electricity, efficiency of the process and the value of the products. One way to improve the economics and improve the efficiency of the process is to integrate CO2 capture with conversion [2,3]. In this way the energy intensive regeneration step of the capture media can be eliminated and also CO2 transportation and storage. Ionic liquids are ideal media to achieve this integration, due to high CO2 adsorption capacity, high selectivity, wide electrochemical windows and nearly zero vapour pressure. The present work reports the progress of electrochemical reduction of CO2 in ionic liquids and the work of the authors in this field. It has been recognized that ionic liquids promote CO2 electro-reduction through lowering the reduction potential, the suppression of the competing hydrogen evolution reaction and by increasing the selectivity towards the target products. However, the understanding of the interactions between ionic liquids, CO2 and catalyst is still quite limited, but fundamental for synthetizing more efficient electrolytes for CO2 electro-reduction [4]. Thus, current cation and anion effects will be analysed and an overview of the current performance of heterogeneous electro-catalysts in ionic liquid- based electrolytes for CO2 electro-reduction will be provided.
  • Protic ionic liquids as electrolyte for electrochemical CO2 reduction [Resumo]
    Publication . Messias, Sofia; Paninho, A. B.; Rangel, C. M.; Branco, Luis C; Machado, Ana
    ABSTRACT: Ionic liquids have been considered a promising material under investigation for integration of CO2 capture and electrochemical reduction, due to their recognized sustainability and tunable properties. During previous works, the development of an electrochemical process to produce syngas (CO+H2) using electrolytes based on 1-ethyl-3-methyl-imidazolium trifluoromethanosulfate [EMIM][OTf] was reported [1-2]. A more recent work reported the effect of replacing the 1-ethyl-3-methyl-imidazolium cation [EMIM] by 1-ethyl-3-picolinium [C2-3-pic] and 1-ethyl-4-picolinium [C2-4-pic] cations as electrolyte for electrochemical reduction of CO2 at pressures higher than atmospheric [3]. The objective of this work is to study the influence of protic ionic liquids-based electrolytes in electrochemical CO2 reduction. In this context, protic ionic liquids prepared by direct protonation of different imidazolium compounds using suitable organic acids have been investigated. All electrolytes are characterized by cyclic voltammetry and electrochemical impedance spectroscopy to evaluate their electrochemistry behavior for CO2 electroreduction processes. Productivities of gaseous products resulting from the co-electrolysis of CO2 and water together with their faradaic efficiencies have been also determined.
  • Imidazolium and picolinium-based electrolytes for electrochemical reduction of CO2 at high pressure
    Publication . Messias, Sofia; Paz, Vitória; Cruz, Hugo; Rangel, C. M.; Branco, Luis C; Machado, Ana
    ABSTRACT: Ionic liquids (ILs) have been considered among one of the most promising materials under investigation for integration of CO2 capture and electrochemical reduction (ECR). In the design of an IL-based electrolyte that can be employed industrially, the understanding of the influence of IL structure on ECR was considered essential. In this context, electrolytes with trifluoromethanosulfonate (OTf) anion were investigated as aqueous electrolytes for electrochemical reduction of CO2 at high pressure and near room temperature with zinc electrodes. The effect of replacing the 1-ethyl-3-methyl-imidazolium cation [EMIM] by 1-ethyl-3-picolinium [C2(3)pic] and by 1-ethyl-4-picolinium [C2(4)pic] cations was studied. The use of picolinium-based electrolytes in ECR is for the first time reported. A high-pressure single compartment test bed was used for electrolyte screening. Carbon monoxide productivities and selectivities were determined for the several electrolytes with different water contents. The electrolytes were characterized by cyclic voltammetry and electrochemical impedance spectroscopy. Electrolyte conductivities and diffusion coefficients were estimated. The effect of the cations is complex as it affects conductivity, double layer structure, reaction reversibility and even the ionic liquid physical state. Notwithstanding, it is possible to tune these properties to achieve similar CO productions with reduced IL amounts, considering the nature of the cation and the water content, leading to the design of more cost effective electrolytes for efficient ECR process.