Loading...
4 results
Search Results
Now showing 1 - 4 of 4
- Structural and Optical Characterization of Mechanochemically Synthesized CuSbS2† [Abstract]Publication . Esperto, Luís; Figueira, Isabel; Mascarenhas, João; Silva, Teresa; Correia, J.B.; Neves, FilipeABSTRACT: The present work describes experimental studies related to the characterization of CuSbS2 directly synthesized after 2 h of mechanochemical synthesis (MCS) at 340 rpm, starting from mixtures of elemental powders. X-ray diffraction (XRD) and UV-VIS-NIR spectroscopy were carried out to analyze the crystal structure, degree of crystallinity, crystallite size and optical properties of the mechanochemically synthesized CuSbS2 powders. Rietveld refinement was carried out using Diffrac. TOPAS (Bruker AXS). Thermal stability of the synthesized materials was evaluated by the vacuum thermal heat treatment of the mechanochemically synthesized CuSbS2 powders at 350 °C for 24 h. Furthermore, the CuSbS2 powders were also analyzed by field-emission scanning electron microscopy (FE-SEM), laser diffraction, and differential thermal analysis.
- Structural and optical characterization of mechanochemically synthesized CuSbS2 compoundsPublication . Esperto, Luís; Figueira, Isabel; Mascarenhas, João; Silva, Teresa; Correia, J.B.; Neves, FilipeABSTRACT: One of the areas of research on materials for thin-film solar cells focuses on replacing In and Ga with more earth-abundant elements. In that respect, chalcostibite (CuSbS2) is being considered as a promising environmentally friendly and cost-effective photovoltaic absorber material. In the present work, single CuSbS2 phase was synthesized directly by a short-duration (2 h) mechanochemical-synthesis step starting from mixtures of elemental powders. X-ray diffraction analysis of the synthesized CuSbS2 powders revealed a good agreement with the orthorhombic chalcostibite phase, space group Pnma, and a crystallite size of 26 nm. Particle-size characterization revealed a multimodal distribution with a median diameter ranging from of 2.93 mu m to 3.10 mu m. The thermal stability of the synthesized CuSbS2 powders was evaluated by thermogravimetry and differential thermal analysis. No phase change was observed by heat-treating the mechanochemically synthesized powders at 350 degrees C for 24 h. By UV-VIS-NIR spectroscopy the optical band gap was determined to be 1.41 eV, suggesting that the mechanochemically synthesized CuSbS2 can be considered suitable to be used as absorber materials. Overall, the results show that the mechanochemical process is a viable route for the synthesis of materials for photovoltaic applications.
- Characterization of Cu2ZnSn(SSe)4 monograin powders by FE-SEMPublication . Neves, Filipe; Livramento, Vanessa; Martins, Isabel M.; Esperto, Luís; Santos, Mário J. G.; Correia, J.B.; Muska, K.; Holopainen, T.The design and synthesis of high-efficiency materials to convert solar to electrical energy is an increasingly important research field. Within the photovoltaic technologies, crystalline Si have an 80% share while the remaining 20% are mostly thin film solar cells based on Cu(In,Ga)(S,Se)2 (CIGSSe) and CdTe [1,2]. However,the cost, the abundance and the environmental impact of the elemental components cannot be neglected. For these reasons, Cu2ZnSnS4 (CZTS), Cu2ZnSnSe4 (CZTSe)and their solid solutions CZTSSe has attracted much attention recently since they can provide the development of cost competitive solar cells. The CZTS-based solar cells consist of earth abundant and relatively inexpensive elements and represent an environmentally friendly alternative compared to the above mentioned systems [3]. The energy conversion efficiency of the CZTS-based solar cells has increased from 0.66% in 1996 to 11.1% recently [4].
- Investigation of single phase Cu2ZnSnxSb1-xS4 compounds processed by mechanochemical synthesisPublication . Neves, Filipe; Stark, A.; Schell, N.; Mendes, Manuel Joao; Aguas, H.; Fortunato, Elvira; Martins, Rodrigo; Correia, J.B.; Joyce, AABSTRACT: The copper zinc tin sulfide (CZTS) compound is a promising candidate as an alternative absorber material for thin-film solar cells. In this study, we investigate the direct formation of Cu1.92ZnSnx(Sb1-x)S-4 compounds [CZT(A)S], with x = 1, 0.85, 0.70, and 0.50, via a mechanochemical synthesis (MCS) approach, starting from powders of the corresponding metals, zinc sulfide, and sulfur. The thermal stability of the CZT(A)S compounds was evaluated in detail by in situ synchrotron high-energy x-ray diffraction measurements up to 700 degrees C. The CZT(A)S compounds prepared via MCS revealed a sphalerite-type crystal structure with strong structural stability over the studied temperature range. The contribution of the MCS to the formation of such a structure at room temperature is analyzed in detail. Additionally, this study provides insights into the MCS of CZTS-based compounds: the possibility of a large-scale substitution of Sn by Sb and the production of single phase CZT(A)S with a Cupoor/Zn-poor composition. A slight increase in the band gap from 1.45 to 1.49-1.51 eV was observed with the incorporation of Sb, indicating that these novel compounds can be further explored for thin-film solar cells.