Repository logo
 
Loading...
Project Logo
Research Project

Untitled

Authors

Publications

Fermentative hydrogen production from microalgal biomass by a single strain of bacterium Enterobacter aerogenes: effect of operational conditions and fermentation kinetics
Publication . Batista, Ana Paula; Gouveia, Luisa; Marques, Paula
ABSTRACT: Biohydrogen production through dark fermentation is a promising technology for generating renewable energy, while using microalgal biomass as a third generation feedstock can further increase the sustainability of the process. In the present study, Scenedesmus obliquus was used as model microalga substrate for studying the impact of operational parameters in batch dark fermentation trials using a strain of Enterobacter aerogenes bacteria. (i) The initial gas-liquid ratio in the bioreactor (from 13 to 8.2) was tested, resulting in higher bioH(2) yields for ratios above 5. (ii) Different bacterial growth, inoculation procedures and fermentation media were tested in combined experiments. The best conditions were chosen by maximising bioH(2) yield and minimising production time and costs. (iii) The autoclave sterilization effect on sugar extraction and bioH(2) yield was tested for different microalga concentrations (2.5-50 g/L) with best results attained for 2.5 g/L (81.2% extraction yield, 40.9 mL H-2/g alga). For the best operational conditions, fermentation kinetics were monitored and adjusted to the Modified Gompertz model, with t(95) (time required for bioH(2) production to attain 95% of the maximum yield) below 4.5 h. The maximum hydrogen production was higher when using wet algal biomass enabling the energy Consuming biomass drying step to be skipped.
Food and fuel microalgae applications: insights from portuguese experience [Resumo]
Publication . Batista, Ana Paula; Nobre, B. P.; Oliveira, Ana Cristina; Passarinho, Paula; Marques, Paula; Ribeiro, Belina; Raymundo, Anabela; Sousa, Isabel; Gouveia, Luisa; Marques, Isabel Paula
Microalgae have a wide range of application fields, from food to fuels, to pharmaceuticals & fine chemicals, aquaculture and environmental bioremediation, among others. Spirulina and Chlorella have been used as food sources since ancient times, due to their high and balanced nutritional value. Our research group in Lisbon has developed a range of food products (emulsions, gelled desserts, biscuits and pastas) enriched with freshwater and marine microalgae (Spirulina, Chlorella, Haematococcus, Isochrysis and Diacronema). The developed products presented attractive and stable colours, high resistance to oxidation and enhanced rheological properties. Some of these products will be prepared at the Post-Congress Course “Functional Foods Development” at the University of Antofagasta. More recently, a great interest has arisen on using microalgae for biofuel production. The same group has also been exploring several marine and freshwater species for biofuel production (e.g., biodiesel, bioethanol, biohydrogen and biomethane) within a biorefinery approach, in order to obtain high and low-value co-products using integral biomass maximizing the energy revenue. Namely, supercritical fluid extraction of Nannochloropsis sp. allowed the recovery of valuable carotenoids and lipids, prior to bioH2 production through dark fermentation of the residual biomass. Also, Scenedesmus obliquus residues after sugars (for bioethanol) and lipids (for biodiesel) extraction has been anaerobically digested attaining high biomethane yields. Regarding sustainability issues, the current trend of our group is now focused on using liquid effluents and high CO2 levels for low cost microalgae growth, contributing to a lower water demand, primary energy consumption and global warming potential by reducing the need for potable water and fertilizers (P, N) and increasing CO2 mitigation. Microalgae biomass has been successfully used for urban wastewater treatment with subsequent bioH2 production, in a biorefinery approach. Presently, ammonium-rich raw effluents from piggeries and poultry industry are being effectively used for microalgae growth avoiding any pre-treatment step.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

3599-PPCDT

Funding Award Number

PTDC/AAC-AMB/100354/2008

ID