Repository logo
 
Loading...
Project Logo
Research Project

Implementation of activities described in the Roadmap to Fusion during Horizon Europe through a joint programme of the members of the EUROfusion consortium

Funder

Authors

Publications

Influence of Cr on the quaternary FeTaTiW medium entropy alloy
Publication . Martins, Ricardo; Monteiro, Bernardo; Pereira Gonçalves, Antonio; Correia, Jose B.; Galatanu, Andrei; Alves, Eduardo; Tejado, Elena; Pastor, Jose Ygnacio; Dias, Marta
ABSTRACT: The search for advanced materials has been growing, and high entropy alloys (HEAs) are emerging as promising candidates for application in the fusion domain. This work investigates the effect of Cr on the FeTaTiW medium entropy alloy to form (CrFeTaTi)70W30 high entropy alloy, comparing the experimental production and characterization with the simulation (molecular dynamics and hybrid molecular dynamics-Monte Carlo) of the phases formed. The alloys were produced by mechanical alloying and sintered by spark plasma sintering. Both simulations have shown that a body-centered cubic structure is formed for both compositions. Monte Carlo simulation provides a more precise prediction of microstructural formation and element segregation. Microstructural examination of the consolidated material revealed the presence of a W-rich phase and a Ti-rich phase, consistent with the phase separation observed in the MC simulations. Moreover, X-ray diffraction analysis of the milled powder for FeTaTiW and (CrFeTaTi)70W30 confirmed the formation of a bcc (body-centered cubic)-type structure with a low fraction of intermetallic phases. Mechanical testing showed ductile behavior at 1000 degrees C where (CrFeTaTi)70W30 showed a stress magnitude almost double that of FeTaTiW. Additionally, the thermal diffusivity between 20 and 1000 degrees C of both alloys increases as the temperature rises. (CrFeTaTi)70W30 exhibits an increase from 3 to 5 mm2/s, while FeTaTiW increases from 4 to 9 mm2/s. Still, both system's thermal diffusivity values are lower than those of CuCrZr and pure tungsten. Despite this, the study underscores the promising attributes of HEAs and highlights areas for further optimization to enhance its suitability for extreme conditions.
The H2Excellence Project-Fuel Cells and Green Hydrogen Centers of Vocational Excellence Towards Achieving Affordable, Secure, and Sustainable Energy for Europe
Publication . Gano, António; Ribeiro Pinto, Paulo Jorge; Esteves, M. Alexandra; Rangel, Carmen M.
ABSTRACT: The demand for green hydrogen (H2) and related technologies is expected to increase in the coming years, driven by climate changes and energy security of supply issues, amid the European and global energy crises. The European Green Deal and REpowerEU Plan have identified H2 as a key pillar for reaching climate neutrality by 2050 and for the intensification of hydrogen delivery targets, bringing the large-scale adoption of hydrogen production and applications, and stressing the need for a skilled workforce in emergent H2 markets. To that end, the H2Excellence project will establish a Platform of Vocational Excellence in the field of fuel cells and green hydrogen technologies, with an educational and training scheme to tackle identified skill gaps and to implement life-long learning opportunities. This project aims to become a European benchmark in training and knowledge transfer, incorporating the entire hydrogen value chain. The work is supported by the Knowledge Triangle Model, integrating education, research, and innovation efforts to build a dynamic ecosystem in the green hydrogen sector. In this work, activities conducted so far by LNEG as a project partner and expected impacts are highlighted. Those activities are based on a stakeholder needs assessment conducted by project partners and on the knowledge and experience accumulated in research activities developed in the Materials for Energy research area.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

European Commission
European Commission

Funding programme

EURATOM Action Grant Budget-Based
EURATOM Cofund Actions

Funding Award Number

101052200

ID