Repository logo
 
Loading...
Project Logo
Research Project

Tailoring microalgae for a sustainable bioprocess in aquafeed applications

Funder

Authors

Publications

Reducing nutrient requirement using nitrogen-fixing bacteria for microalgae cultivation
Publication . Melkonyan, Lusine; Ferreira, Alice; Bastos, Carolina R. V.; Figueiredo, Daniel; Lopes da Silva, Teresa; Avetisova, Gayane; Karapetyan, Zh.; Toplaghaltsyan, A.; Gouveia, Luisa
ABSTRACT: In environments, microalgae have been observed to coexist with bacteria. Different nitrogen-fixing bacteria (NFB) were isolated from Armenian soils and their growth was evaluated in co-cultivation with the microalga Tetradesmus obliquus and cyanobacteria Synechocystis sp. PCC 6803. The most effective mutualistic consortium was T. obliquus-NFB5 (Sphingobacterium sp. L13G8). This resulted an increase in both populations, chlorophyll fluorescence, biomass protein, carbohydrate content, an effect on lipid metabolism, without the need for external nitrogen. The findings demonstrated the significance of employing NFB for microalga growth, as they facilitate the essential nitrogen provision in N-free Bristol medium. Moreover, in mutualistic consortia, microalgae facilitate the exudation of dissolved organic carbon and O2 to bacteria, which, in turn, become available for bacteria, thereby reducing the necessity for energy-consuming aeration processes in co-cultivation. In return, the bacteria provide the microalgae with CO2, B vitamins and demineralize N2, P, S, thereby further supporting the growth of microalgae.
Optimizing Chlorella vulgaris production and exploring its impact on germination through microalga-N2-fixing bacteria consortia
Publication . Sanchez-Zurano, Ana; Vilaro-Cos, Silvia; Figueiredo, Daniel; Melkonyan, Lusine; Ferreira, Alice; Acien Fernandez, F. Gabriel; Lafarga, Tomás; Gouveia, Luisa
ABSTRACT: Microalgal biomass is increasingly valued in industrial and agricultural sectors due to its bioactive compounds. However, large-scale production remains costly, mainly due to nitrogen fertilizer expenses. A promising sustainable alternative is co-cultivation with N2-fixing bacteria, capable of supplying biologically available nitrogen. In this study, Chlorella vulgaris was grown in synthetic medium with and without nitrogen, as well as in co-culture with three different N2-fixing bacteria in nitrogen-free medium. Microalgal growth was assessed by dry weight, Fv/Fm ratio, and flow cytometry, which also allowed evaluation of population dynamics and cell viability. Biomass composition (proteins, carbohydrates, lipids, chlorophyll, and carotenoids) was analyzed under all conditions. Co-cultures in nitrogen-free medium showed comparable biomass productivity to nitrogen-supplemented controls, although Fv/Fm values indicated physiological stress in some cases. Moreover, the agricultural potential of the resulting biomass and supernatants was evaluated through germination bioassays using lettuce seeds. All cultures tested at 0.2 g & sdot;L-1 significantly improved the germination index. Also, applying the culture supernatant (biomass removed) also yielded positive effects, with GI increases exceeding 40 %. These results suggest that co-cultivation with N2-fixing bacteria can support efficient microalgal production while generating biomass and supernatants with biostimulant potential, contributing to sustainable agriculture and circular bioeconomy strategies.

Organizational Units

Description

Keywords

, Engineering and technology ,Engineering and technology/Industrial biotechnology

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia, I.P.

Funding programme

Funding Award Number

2022.11872.BDANA

ID