Repository logo
 
Loading...
Project Logo
Research Project

SYmbiosis for eNERGY harversting concepts for smart platforms on foils

Funder

Organizational Unit

Authors

Publications

Copper-Arsenic-Sulfide Thin-Films from Local Raw Materials Deposited via RF Co-Sputtering for Photovoltaics
Publication . Centeno, Pedro; Alexandre, Miguel; Neves, Filipe; Fortunato, Elvira; Martins, Rodrigo; Águas, Hugo; Mendes, Manuel Joao
ABSTRACT: he inexorable increase of energy demand and the efficiency bottleneck of monocrystalline silicon solar cell technology is promoting the research and development of alternative photovoltaic materials. Copper-arsenic-sulfide (CAS) compounds are still rather unexplored in the literature, yet they have been regarded as promising candidates for use as p-type absorber in solar cells, owing to their broad raw material availability, suitable bandgap and high absorption coefficient. Here, a comprehensive study is presented on the structural and optoelectronic properties of CAS thin-films deposited via radio-frequency magnetron co-sputtering, using a commercial Cu target together with a Cu-As-S target with material obtained from local resources, specifically from mines in the Portuguese region of the Iberian Pyrite Belt. Raman and X-ray diffraction analysis confirm that the use of two targets results in films with pronounced stoichiometry gradients, suggesting a transition from amorphous CAS compounds to crystalline djurleite (Cu31S16), with the increasing proximity to the Cu target. Resistivity values from 4.7 m ohm center dot cm to 17.4 ohm center dot cm are obtained, being the lowest resistive films, those with pronounced sub-bandgap free-carrier absorption. The bandgap values range from 2.20 to 2.65 eV, indicating promising application as wide-bandgap semiconductors in third-generation (e.g., multi-junction) photovoltaic devices.
Sub-Bandgap Sensitization of Perovskite Semiconductors via Colloidal Quantum Dots Incorporation
Publication . Ribeiro, Guilherme; Ferreira, G.; Menda, U.D.; Alexandre, Miguel; Brites, Maria João; Barreiros, M. Alexandra; Jana, S.; Águas, Hugo; Martins, Rodrigo; Fernandes, P.A.; Salomé, P.M.P.; Mendes, M.J.
ABSTRACT: By taking advantage of the outstanding intrinsic optoelectronic properties of perovskite-based photovoltaic materials, together with the strong near-infrared (NIR) absorption and electronic confinement in PbS quantum dots (QDs), sub-bandgap photocurrent generation is possible, opening the way for solar cell efficiencies surpassing the classical limits. The present study shows an effective methodology for the inclusion of high densities of colloidal PbS QDs in a MAPbI3 (methylammonium lead iodide) perovskite matrix as a means to enhance the spectral window of photon absorption of the perovskite host film and allow photocurrent production below its bandgap. The QDs were introduced in the perovskite matrix in different sizes and concentrations to study the formation of quantum-confined levels within the host bandgap and the potential formation of a delocalized intermediate mini-band (IB). Pronounced sub-bandgap (in NIR) absorption was optically confirmed with the introduction of QDs in the perovskite. The consequent photocurrent generation was demonstrated via photoconductivity measurements, which indicated IB establishment in the films. Despite verifying the reduced crystallinity of the MAPbI3 matrix with a higher concentration and size of the embedded QDs, the nanostructured films showed pronounced enhancement (above 10-fold) in NIR absorption and consequent photocurrent generation at photon energies below the perovskite bandgap.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

European Commission

Funding programme

H2020

Funding Award Number

952169

ID