Loading...
Research Project
Untitled
Funder
Authors
Publications
Cork-derived ceria ecoceramics for solar fuel production via thermochemical redox process using concentrated solar energy
Publication . Novais, Rui M.; Oliveira, Fernando Almeida Costa; Barreiros, M. Alexandra; Abanades, Stéphane; Caetano, Ana P. F.; Pullar, Robert C.
A review of solar thermochemical CO2 splitting using ceria-based ceramics with designed morphologies and microstructures
Publication . Pullar, Robert C.; Novais, Rui M.; Caetano, Ana P. F.; Barreiros, M. Alexandra; Abanades, Stéphane; Oliveira, Fernando Almeida Costa
ABSTRACT: This review explores the advances in the synthesis of ceria materials with specific morphologies or porous macro- and microstructures for the solar-driven production of carbon monoxide (CO) from carbon dioxide (CO2). As the demand for renewable energy and fuels continues to grow, there is a great deal of interest in solar thermochemical fuel production (STFP), with the use of concentrated solar light to power the splitting of carbon dioxide. This can be achieved in a two-step cycle, involving the reduction of CeO2 at high temperatures, followed by oxidation at lower temperatures with CO2, splitting it to produce CO, driven by concentrated solar radiation obtained with concentrating solar technologies (CST) to provide the high reaction temperatures of typically up to 1,500 degrees C. Since cerium oxide was first explored as a solar-driven redox material in 2006, and to specifically split CO2 in 2010, there has been an increasing interest in this material. The solar-to-fuel conversion efficiency is influenced by the material composition itself, but also by the material morphology that mostly determines the available surface area for solid/gas reactions (the material oxidation mechanism is mainly governed by surface reaction). The diffusion length and specific surface area affect, respectively, the reduction and oxidation steps. They both depend on the reactive material morphology that also substantially affects the reaction kinetics and heat and mass transport in the material. Accordingly, the main relevant options for materials shaping are summarized. We explore the effects of microstructure and porosity, and the exploitation of designed structures such as fibers, 3-DOM (three-dimensionally ordered macroporous) materials, reticulated and replicated foams, and the new area of biomimetic/biomorphous porous ceria redox materials produced from natural and sustainable templates such as wood or cork, also known as ecoceramics.
Solar thermochemical CO2 splitting using cork-templated ceria ecoceramics
Publication . Oliveira, Fernando Almeida Costa; Barreiros, M. Alexandra; Abanades, Stéphane; Caetano, Ana P. F.; Novais, Rui M.; Pullar, Robert C.
ABSTRACT: This work addresses the solar-driven thermochemical production of CO and O-2 from two-step CO2-splitting cycles, using both ceria granules prepared from cork templates (CG) and ceria foams from polyurethane templates (CF). These materials were cycled in a high-temperature indirectly-irradiated solar tubular reactor using a temperature-swing process. Samples were typically reduced at 1400 degrees C using concentrated solar power as a heating source and subsequently oxidised with CO2 between 1000-1200 degrees C. On average, CO production yields for CG were two times higher than for CF, indicating that the morphology of this three-dimensionally ordered macroporous (3-DOM) CeO2 improves the reaction kinetics. Their performance stability was demonstrated by conducting 11 cycles under solar irradiation conditions. Slightly increasing the reduction temperature strongly enhanced the reduction extent, and thus the CO production yield (reaching about 0.2 mmol g(-1) after reduction at 1450 degrees C in inert gas), while decreasing the oxidation temperature mainly improved the CO production rate (up to 1.43 mu mol s(-1) g(-1) at 1000 degrees C). Characterisation of the 3-DOM structure, by means of XRD and SEM, provided insights into the reactivity behaviour of the developed materials. The pre-sintered ceria granules retained their structure after cycling. The fact that the mean cell size of CG is smaller (at least one order of magnitude) than that of CF suggests that its exposed surfaces enhanced reaction rates by a factor of two. Moreover, the maximum fuel production rate of CG was roughly three times greater than that reported previously for a ceria reticulated porous foam with dual-scale porosity.
Slow pyrolysis of cork granules under nitrogen atmosphere: by-products characterization and their potential valorization
Publication . Costa, Paula; Barreiros, M. Alexandra; Mouquinho, Ana; Silva, P. Oliveira e; Paradela, Filipe; Oliveira, Fernando Almeida Costa
ABSTRACT: Cork granules (Quercus suber L.) were slowly pyrolyzed at temperatures between 400-700 degrees C and under N-2 flow. While preserving its structure, some cells of the cork biochar became interconnected, allowing such carbon residue to be used as templates for manufacturing ceria redox materials. The pyrolytic char morphology was similar to that of the natural precursor. The produced cork biochar belonged to Class 1 (C > 60%) and possessed a high heating value of 32 MJ kg(-1). Other pyrolysis-derived compounds were identified and quantified through GC-FID and GC-MS analyses. The yield of gases released during cork pyrolysis was strongly dependent on the temperature used due to the thermal decomposition reactions involved in the degradation of cork. In particular, rising pyrolysis temperature from 500 to 700 T resulted in reducing the total hydrocarbon gases from 74 to 24 vol%. On the other hand, the yield of H-2 increased from 0 to 58% by increasing the pyrolysis temperature from 400 to 700 T. Due to the presence of suberin in cork, the composition and yield of bio-oil could be regulated by the pyrolysis temperature. Cork bio-oil was found to consist of long-chain hydrocarbons (from C11 to C24). The bio-oil resulting from the slow pyrolysis of cork residues is suitable as an appropriate feedstock for producing aliphatic-rich pyrolytic biofuels or as a source of olefms. Overall, the findings of this study suggest that Quercus suber L. could be a promising feedstock for biochar and biofuel production through the pyrolytic route and could contribute to the environmental and economic sustainability of the cork production industry.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
9471 - RIDTI
Funding Award Number
PTDC/CTM-ENE/6762/2014