Repository logo
 
Publication

An optimized probabilistic forecasting approach for hybridized wind power plants

dc.contributor.authorCouto, António
dc.contributor.authorAlgarvio, Hugo
dc.contributor.authorEstanqueiro, Ana
dc.date.accessioned2024-09-11T08:41:55Z
dc.date.available2024-09-11T08:41:55Z
dc.date.issued2024-05
dc.description.abstractABSTRACT: Accurate forecasts are essential for efficiently integrate variable renewable power plants into power systems and electricity markets. Since hybrid power plants are a new area of research, several key challenges need to be addressed. This work presents a probabilistic power forecast approach to hybridised wind power plants with solar power. The forecasting metho dology uses a sequential forward feature selection algorithm, employing distinct objective functions and an artificial neural network approach. The probabilistic power forecasts are obtained using a quantile spline regression technique. The approach supports the identification of the: i) optimal quantile and ii) exogenous features (e.g., meteorological input features from numerical weather prediction – NWP models) to increase the profitability of the hybrid power plants in an electricity market environment. As expected, hybridization increases the remuneration of the producer when compared to existing wind plants, regardless of complementarity levels. This increase in remuneration of hybrid plants is superior for the highest generation complementarity case. The use of quantiles to calibrate the forecast approach proves to be crucial for increasing the remuneration compared to the traditional deterministic approach based on the power forecast expected value.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationCouto, A., Algarvio, H. & Estanqueiro, A. (2024) An optimized probabilistic forecasting approach for hybridized wind power plants. In: 8th International Hybrid Power Plants & Systems Workshop (HYB 2024), Azores, Portugal, 14-15 May, 2024, p. 295-301. https://doi.org/10.1049/icp.2024.1852pt_PT
dc.identifier.doi10.1049/icp.2024.1852pt_PT
dc.identifier.isbn978-1-83724-148-4
dc.identifier.urihttp://hdl.handle.net/10400.9/4345
dc.language.isoengpt_PT
dc.publisherIETpt_PT
dc.relationTools for the Design and modelling of new markets and negotiation mechanisms for a ~100% Renewable European Power Systems
dc.relation.publisherversionhttps://doi.org/10.1049/icp.2024.1852pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectHybrid renewable power plantspt_PT
dc.subjectWind power plantspt_PT
dc.subjectSolar powerpt_PT
dc.subjectPower forecastpt_PT
dc.titleAn optimized probabilistic forecasting approach for hybridized wind power plantspt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.awardTitleTools for the Design and modelling of new markets and negotiation mechanisms for a ~100% Renewable European Power Systems
oaire.awardURIinfo:eu-repo/grantAgreement/EC/H2020/864276/EU
oaire.citation.conferencePlaceAçores, Portugalpt_PT
oaire.citation.endPage301pt_PT
oaire.citation.startPage295pt_PT
oaire.citation.title8th International Hybrid Power Plants & Systems Workshoppt_PT
oaire.fundingStreamH2020
person.familyNameCouto
person.familyNameEstanqueiro
person.givenNameAntónio
person.givenNameAna
person.identifier.ciencia-id2619-80A1-A8AC
person.identifier.ciencia-idB01D-304F-6CD3
person.identifier.ciencia-id7F11-A24D-EE81
person.identifier.orcid0000-0002-7368-8817
person.identifier.orcid0000-0002-4129-838X
person.identifier.orcid0000-0002-0476-2526
person.identifier.ridJ-9752-2012
person.identifier.scopus-author-id19336967700
project.funder.identifierhttp://doi.org/10.13039/501100008530
project.funder.nameEuropean Commission
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublicationa0c5b011-98c5-49d3-9ac6-ddfb6027f500
relation.isAuthorOfPublication63bffd90-c233-4ffe-b222-d5b12e31ae33
relation.isAuthorOfPublication20aa31b3-fa3c-42b7-82a4-e6b91c017f9c
relation.isAuthorOfPublication.latestForDiscovery63bffd90-c233-4ffe-b222-d5b12e31ae33
relation.isProjectOfPublication7d7e6f9b-bf23-4adc-8f93-2061ef327e26
relation.isProjectOfPublication.latestForDiscovery7d7e6f9b-bf23-4adc-8f93-2061ef327e26

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
AntónioCouto-et.al_Workshop_HYB 2024.pdf
Size:
377.69 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: