Repository logo
 
Publication

Solar redox cycling of ceria structures based on fiber boards, foams, and biomimetic cork-derived ecoceramics for two-step thermochemical H2O and CO2 splitting

dc.contributor.authorHaeussler, Anita
dc.contributor.authorAbanades, Stéphane
dc.contributor.authorOliveira, Fernando Almeida Costa
dc.contributor.authorBarreiros, M. Alexandra
dc.contributor.authorCaetano, Ana P. F.
dc.contributor.authorNovais, Rui M.
dc.contributor.authorPullar, Robert C.
dc.date.accessioned2020-09-24T16:07:07Z
dc.date.available2024-12-01T01:30:42Z
dc.date.issued2020
dc.description.abstractABSTRACT: Solar thermochemical conversion of H2O and captured CO2 is considered for the production of high-value solar fuels and CO2 valorization, using nonstoichiometric oxygen-exchange redox materials. This work aims to compare the thermochemical cycle performance of different ceria structures, including biomimetic cork-templated ceria (CTCe), ceria foams (CeF), and ceria bulk fiber boards (CeFB), to study the effect of the morphology on fuel production from two-step H2O and CO2 splitting via solar redox cycling. The considered materials underwent thermochemical cycles in a directly irradiated solar reactor under various operating conditions. Typically, a thermal reduction at 1400 degrees C under Ar at atmospheric pressure, using concentrated solar energy, was carried out followed by an oxidation step with H2O or CO2 between 800 and 1050 degrees C. The comparison of the fuel production rate and yield from the reactive materials highlighted the importance of the material thermal stability during cycling. CTCe and CeF showed good O-2 and fuel production stability over repeated cycles, while CeFB exhibited a decrease of the production because of sintering and thermal gradient due to its low thermal conductivity. Biomimetic CTCe showed a higher fuel production rate compared to the other investigated materials, explained by the favorable microstructure of the cork-based ceramic. The morphology obtained from the cork structure led to the improvement of the redox activity, demonstrating the relevance of studying this material for thermochemical H2O and CO2 splitting cycles. In addition, the impact of the operating conditions was investigated. A decrease of the starting oxidation temperature, an increase of the CO2 molar fraction (lower CO/CO2 ratio), or a high total gas flow rate favoring gas product dilution had a beneficial impact on the CO (or H-2) production rate.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationHaeussler, Anita... [et.al.] - Solar redox cycling of ceria structures based on fiber boards, foams, and biomimetic cork-derived ecoceramics for two-step thermochemical H2O and CO2 splitting. In: Energy & Fuels, 2020, Vol. 34 (7), p. 9037-9049pt_PT
dc.identifier.doi10.1021/acs.energyfuels.0c01240pt_PT
dc.identifier.eissn1520-5029
dc.identifier.issn0887-0624
dc.identifier.urihttp://hdl.handle.net/10400.9/3320
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherAmerican Chemical Societypt_PT
dc.relationFCT - PTDC/CTM-ENE/6762/2014pt_PT
dc.relationFCT - POCI-01-0145-FEDER-016862pt_PT
dc.relationFCT - CEECIND/00335/2017pt_PT
dc.relationFCT - IF/00681/2015pt_PT
dc.relation.publisherversionhttps://doi.org/10.1021/acs.energyfuels.0c01240pt_PT
dc.subjectSolar fuelspt_PT
dc.subjectThermochemical cyclept_PT
dc.subjectConcentrated solar powerpt_PT
dc.subjectCorkpt_PT
dc.titleSolar redox cycling of ceria structures based on fiber boards, foams, and biomimetic cork-derived ecoceramics for two-step thermochemical H2O and CO2 splittingpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/5876/UID%2FCTM%2F50011%2F2013/PT
oaire.citation.endPage9049pt_PT
oaire.citation.issue7pt_PT
oaire.citation.startPage9037pt_PT
oaire.citation.titleEnergy and Fuelspt_PT
oaire.citation.volume34pt_PT
oaire.fundingStream5876
person.familyNameOliveira
person.familyNameBarreiros
person.givenNameFernando
person.givenNameMaria Alexandra
person.identifier647144
person.identifierL-4674-2014
person.identifier.ciencia-id561B-597F-9D55
person.identifier.ciencia-id271D-7B29-E46C
person.identifier.orcid0000-0002-1503-0152
person.identifier.orcid0000-0002-0132-4969
person.identifier.ridA-2312-2011
person.identifier.scopus-author-id23019925500
person.identifier.scopus-author-id6603680496
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication2c841cae-13ca-44f6-8cb1-b5ce93608bae
relation.isAuthorOfPublication3b1e7d6a-3232-443e-a747-f442427dc57a
relation.isAuthorOfPublication.latestForDiscovery3b1e7d6a-3232-443e-a747-f442427dc57a
relation.isProjectOfPublicationdaab8300-1344-413b-978e-c538c8a46a1d
relation.isProjectOfPublication.latestForDiscoverydaab8300-1344-413b-978e-c538c8a46a1d

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
A5_Energy Fuels_34_2020_9037−9049.pdf
Size:
10.5 MB
Format:
Adobe Portable Document Format