Logo do repositório
 
Publicação

Natural Stone Image Classification Using Online Databases and Convolutional Neural Networks

datacite.subject.fosCiências Naturais::Ciências da Terra e do Ambiente
dc.contributor.authorBrito, J. H.
dc.contributor.authorMorim, D. M.
dc.contributor.authorCarvalho, Cristina Isabel Paulo
dc.contributor.authorAlves, Raquel
dc.date.accessioned2026-02-09T15:14:39Z
dc.date.available2026-02-09T15:14:39Z
dc.date.issued2025-06
dc.description.abstractABSTRACT: In this paper, we discuss the relevance of two distinct types of online natural stone databases (technical-institutional repositories and logistics-commercial e-platforms) for extracting (training and testing) input images and creating an automatic visual inspection system for natural stone classification. Using convolutional neural networks (CNNs) and images from a selected online data repository, a Deep Learning (DL) system was developed to estimate the class of the natural stone in a given image. The DL models were developed through transfer learning from existing image classifiers, as pre-trained classifiers were retrained on our dataset. Our best model achieved an Accuracy of 70.3% and an F-score of 0.67 for 70 classes.eng
dc.identifier.citationBrito, J., Morim, D., Carvalho, C., & Alves, R. (2025). Natural Stone Image Classification Using Online Databases and Convolutional Neural Networks. In: Proceedings of the 8th Global Stone Congress, Drama, Greece, 16-20 June, 2025
dc.identifier.urihttp://hdl.handle.net/10400.9/6250
dc.language.isoeng
dc.peerreviewedno
dc.relationApplied Artificial Intelligence Laboratory
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectNatural stones
dc.subjectDigital database
dc.subjectStone classification
dc.subjectComputer vision
dc.titleNatural Stone Image Classification Using Online Databases and Convolutional Neural Networkseng
dc.typeconference paper
dspace.entity.typePublication
oaire.awardTitleApplied Artificial Intelligence Laboratory
oaire.awardURIhttp://hdl.handle.net/10400.9/6249
oaire.citation.conferenceDate2025-06
oaire.citation.conferencePlaceDrama, Greece
oaire.citation.title8th Global Stone Congress
oaire.fundingStreamConcurso de avaliação no âmbito do Programa Plurianual de Financiamento de Unidades de I&D (2017/2018) - Financiamento Base
oaire.versionhttp://purl.org/coar/version/c_be7fb7dd8ff6fe43
person.familyNameCarvalho
person.givenNameCristina Isabel Paulo
person.identifier.orcid0000-0002-9113-2839
relation.isAuthorOfPublication0d9d2d07-52ca-4dcc-b38a-ed52808c273c
relation.isAuthorOfPublication.latestForDiscovery0d9d2d07-52ca-4dcc-b38a-ed52808c273c
relation.isProjectOfPublicationa4d70f44-d409-4371-8f78-20344c55a4ca
relation.isProjectOfPublication.latestForDiscoverya4d70f44-d409-4371-8f78-20344c55a4ca

Ficheiros

Principais
A mostrar 1 - 1 de 1
A carregar...
Miniatura
Nome:
8th GSC_16-20Jun2025_Natural Stone Image.pdf
Tamanho:
830.99 KB
Formato:
Adobe Portable Document Format
Licença
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
license.txt
Tamanho:
4.03 KB
Formato:
Item-specific license agreed upon to submission
Descrição: