EAC - Comunicações em actas de encontros científicos internacionais
URI permanente para esta coleção:
Navegar
Percorrer EAC - Comunicações em actas de encontros científicos internacionais por autor "Aelenei, Daniel"
A mostrar 1 - 5 de 5
Resultados por página
Opções de ordenação
- Design issues for net zero-energy buildingsPublication . Aelenei, Laura Elena; Aelenei, Daniel; Goncalves, Helder; Lollini, Roberto; Musall, Eike; Scognamiglio, Alessandra; Cubi, Eduard; Noguchi, MassaNet Zero-Energy Buildings (NZEBs) have received increased attention in recent years as a result of constant concerns for energy supply constraints, decreasing energy resources, increasing energy costs and rising impact of greenhouse gases on world climate. Promoting whole, building strategies that employ passive measures with energy efficient systems and technologies using renewable energy, became a European political strategy since the publication of the Energy Performance of Building Directive recasr in May 2010 by the European Parliament and Council.
- Design strategies for non-residential zero-energy buildings: lessons learned from Task40/Annex 52: towards net zero-energy solar buildingsPublication . Aelenei, Daniel; Aelenei, Laura Elena; Musall, Eike; Cubi, Eduard; Ayoub, Josef; Belleri, AnnamariaNet zero-energy buildings (Net ZEBs) have been the object of various studies in recent years as various countries have set this performance as long-term goal of their energy policies. Designing successful Net ZEBs represents a challenge since the definitions are yet generic, the assessment method and monitoring approach are under development and the literature is relatively scarce about the best sets of solutions for different typologies and climates likely to deliver an actual and reliable performance in terms of energy balance (used consumed vs. generated) on a costeffective basis. The International collaborative research initiative between the Solar Heating and Cooling (SHC) and the Energy Conservation in Buildings and Community Systems (ECBCS) through Task 40/Annex 52 - Towards Net-Zero Energy Solar Buildings-, summarises most of the recent developments in this field. The authors of this article, who are participants in this task, are providing insights from on-going research work on some best practice leading projects which have been the object of an exploratory cross-case analysis in order to facilitate identification of the set of relevant design strategies. The close inspection of the strategies and indicators of the relative performance of the projects revealed interesting features about the combination of design challenges with techniques and technologies responsible for delivering the Zero Energy performance.
- Passive adaptive façades : examples from COST TU1403 working group 1Publication . Mazzucchelli, Enrico Sergio; Aelenei, Laura Elena; Gomes, Maria da Glória; Karlessi, Theoni; Alston, Mark; Aelenei, DanielABSTRACT: Buildings often adopt strategies based on the integration of solutions and technologies in façades capable of changing their behaviour in time to improve energy efficiency and comfort. Considering that the envelope is the main parameter that influences the energy performance of buildings, façade elements with adaptive features can provide the buildings the necessary flexibility needed in terms of energy flow and thermal comfort in the context of nZEB, where the buildings must be interactive in the zero energy and smart city context. Several different types of adaptive façade concepts have already been developed, and an increase in emerging, innovative solutions is expected in the near future. However, when referring to adaptive technologies, two main categories can be distinguished. Adaptive technologies, which rely on passive design to improve building energy efficiency and comfort, and active technologies which include renewable harvesting. The aim of this paper is to provide several examples of passive adaptive technologies and their performance features from COST TU1403 Working Group 1 database.
- Standard Unretrofitted Buildings and Net Zero-Energy ConceptPublication . Aelenei, Daniel; Aelenei, Laura Elena; Santos, M.C. da CostaThere are many different possible combinations of building envelope, utility equipments and onsite energy generation equipments that can lead to net zero-energy performance. For instance, a building with standard design can offset its energy demand by adding a large amount of photovoltaic cells or by improving its energy efficiency rating first and then adding a smaller amount of photovoltaic cells. Despite the second strategy being considered the roadmap to net zeroenergy status, the first scenario is also possible in the actual Portuguese context where laws favor conditions for the installation of PV´s and solar thermal systems. This paper intends to discuss the implications of this fact from a national perspective coupled with the IEA SHC Task 40 - ECBCS Annex 52 vision where authors are active participants.
- The nZEBs in the near Future: Overview of definitions and guidelines towards existing plans for increasing nZEBsPublication . Aelenei, Laura Elena; Goncalves, Helder; Aelenei, DanielZero-energy performance buildings have gained significant attention since the publication in 2010 of the recast of the EPBD recast which requires all new buildings to become nearly zero-energy by 2020. Buildings are requested to meet higher levels of energy performance and to explore more the alternative energy supply systems available locally on a cost-efficiency basis. Since the directive does not specify minimum or maximum harmonized requirements as well as details of energy performance calculation framework, it is up to the member states to define the exact meaning of “high energy performance” and “amount of energy from renewable sources” according to their own local conditions and strategic interests. Nearly zero-energy building (nZEB) performance derives from net zero-energy concept (Net ZEB) which in case of buildings is usually defined as a high energy performance building that over a year is energy neutral. The successful implementation of such an ambitious target, however, needs to be planned out diligently. The critical steps are a) a correct picture about the existing state and trends, b) clear definitions and targets, c) dynamic building codes and energy efficient technologies and d) rules for testing and verification. The nZEBs or NetZEBs built in the near future therefore may play a critical role in implementing any ambitious plan as its success on long-term relies on setting best practice examples, in addition of the supporting policies and initiatives. The purpose of this paper is to review existing definitions, terms and policies on strategic planning of nZEBs at national and international level.
