Browsing by Author "Guillot, Emmanuel"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Current Progress of Activities at EU-SOLARIS ERIC: The European Research Infrastructure Consortium for CSP TechnologiesPublication . Sánchez-Moreno, Ricardo; Blanco Galvez, Julian; Guillot, Emmanuel; Flamant, Gilles; Blanco Muriel, Manuel Jesus; Benitez, Daniel; Georgiou, Marios; Fylaktos, Nestor; Cardoso, João; Canavarro, Diogo; Martín, José; Martinez, DiegoABSTRACT: An ERIC, established by a decision of the European Commission, is a legal entity possessing legal personality and full legal capacity acknowledged across all EU Member States. Its primary role is to establish and operate a research infrastructure on a non-economic basis. Under the initiative of Spain, France, Germany, and Cyprus as Members, with Portugal as an Observer, a European Research Infrastructure Consortium (ERIC) has been formed. This consortium, named "European Solar Research Infrastructure for Concentrated Solar Power" (EU-SOLARIS ERIC) is established in accordance with Council Regulation (EC) No. 723/2009 of 25 June 2009. The establishment of an ERIC was sanctioned by the European Commission, as evidenced in Commission Implementing Decision (EU) 2022/2297 of 19 October 2022 [1]. The inaugural assembly of the EU-SOLARIS ERIC took place at the CIEMAT Headquarters in Madrid on 12th January 2023. During this gathering, the General Assembly was officially convened, and the Statutes along with other governing documents were formally endorsed. At the time of composing this document, negotiations for the accession of three additional countries—Greece, Turkey, and Italy—are underway. This paper summarizes the R&D activities carried out during this first year of the ERIC, particularly, we describe the new projects achieved.
- Intercomparison of opto-thermal spectral measurements for concentrating solar thermal receiver materials from room temperature up to 800 °CPublication . Caron, Simon; Farchado, Meryem; San Vicente, Gema; Morales, Angel; Ballestrin, Jesus; Carvalho, Maria João; Páscoa, Soraia; Baron, Estelle; Disdier, Angela; Guillot, Emmanuel; Escape, Christophe; Binyamin, Yaniv; Baidossi, Mubeen; Sutter, Florian; Roger, Marc; Manzano-Agugliaro, FranciscoABSTRACT: An intercomparison of opto-thermal spectral measurements has been performed for some relevant receiver materials in concentrating solar thermal applications, from room temperature up to 800 degrees C. Five European laboratories performed spectral measurements at room temperature, while two laboratories performed infrared spectral measurements at operating temperature up to 800 degrees C. Relevant materials include Haynes 230 (oxidized, Pyromark 2500 and industrial black coating) and silicon carbide. Two key figures of merit were analyzed: i) solar absorptance alpha sol at room temperature, over the spectral range [0.3 - 2.5] mu m, ii) thermal emittance epsilon th(T), over the common spectral range [2-14] mu m, derived from spectral measurements performed from room temperature up to 800 degrees C. Oxidized H230 reached an alpha sol value of 90.9 +/- 1.0%. Pyromark 2500 reached an alpha sol value of 96.3 +/- 0.5%, while the industrial black coating achieved an alpha sol value of 97.0 +/- 0.4%. Silicon carbide reached an alpha sol value of 93.5 +/- 1.1%. Low standard deviations in alpha sol indicate reproducible measurements at room temperature. For oxidized H230, the epsilon th,calc(T) value varied from 55% at room temperature up to 81% at 800 degrees C. For Pyromark 2500 and the industrial black coating, epsilon th,calc(T) fluctuated between 90% and 95%, with a weak temperature dependence. For silicon carbide, epsilon th,calc(T) varied from 70% at room temperature up to 86% at 800 degrees C. The typical standard deviation among participating laboratories is about 3%. epsilon th,meas(T) values derived from spectral measurements at operating temperature were consistent within a few percentage points in comparison to epsilon th,calc(T) values derived from spectral measurements at room temperature.
