Browsing by Author "Mujtaba, Babar"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- How sensitive is a carbon-neutral power sector to climate change? The interplay between hydro, solar and wind for PortugalPublication . Fortes, Patricia; Simoes, Sofia; Amorim, Filipa; Siggini, Gildas; Sessa, Valentina; Saint-Drenan, Yves-Marie; Carvalho, Silvia; Mujtaba, Babar; Diogo, Paulo; Assoumou, EdiABSTRACT: Climate change will impact renewable resources and electricity demand, usually not jointly considered when designing future decarbonized power systems. This paper assesses how sensitive the Portuguese carbon-neutral power sector is to climate change by 2050 and what are the implications for the formally approved Portuguese Carbon Neutrality Roadmap. The future capacity factors for wind, solar and hydropower and electricity demand response to temperature are estimated for 22 climate projections along the Representative Concentration Pathway 4.5 and 8.5. The eTIMES_PT optimization model is used to assess its combined impact on the cost-optimal configuration of the power sector by 2050. Results show that climate change lowers hydropower generation by 20% (in median terms). Improving spatial and temporal resolution and including future climate patterns, results also in lower cost-effectiveness of solar photovoltaic vis-a-vis the Carbon Neutrality Roadmap. While future climate does not impact onshore wind production, offshore wind power generation is positively affected, being a climate-resilient carbon-neutral option for Portugal. Annual electricity unitary costs at final users (excluding taxes and levies) only increase up to 4% with climate change, but seasonal costs have higher variability. This analysis highlights that climate change affects the cost-optimal annual carbon-neutral power sector and needs to be included in energy planning.
- Seasonal Forecast Climate Data and Hydropower Production in the Douro Basin, in PortugalPublication . Diogo, Paulo; Beça, Pedro; Simoes, Sofia; Amorim, Filipa; Mujtaba, BabarABSTRACT: The project CLIM2POWER aims at developing a climate service including state-of-the art seasonal climate forecasts in the planning of the operation of the power systems. This work presents part of the project, addressing the forecasting of the hydropower generation in a case study area, the Portuguese part of the transboundary Douro River basin. Rainfall-runoff modelling was performed on a daily scale using three ensemble members of seasonal climate data (six months) for Portuguese territory crossed with three daily inflow scenarios from Spanish territory defined according to historical observed data. The obtained results reflect the fact that seasonal climate forecast present a wide variation of scenarios and also the fact that hydropower production in Portuguese territory is highly dependent on transboundary inflows. On the other hand, the implemented approach successfully produced consistent runoff and hydropower production results although improvements on the identification of the most probable scenarios are yet required.
- Simulated hydropower production under climate change scenarios at Torrão reservoir, in northern PortugalPublication . Diogo, Paulo; Mujtaba, Babar; Beça, Pedro; Simoes, Sofia; Fortes, Patricia; Amorim, FilipaABSTRACT: Climate conditions have a significant impact on energy demand and production. The project CLIM2POWER, completed in 2021, aimed to develop a climate service at European scale for the planning of the power infrastructures operations using seasonal forecasts and long-term climate projections. This work presents part of the project, and focus on assessing the climate change impacts on hydropower production of Torrão Dam. Torrão reservoir is located on the Tâmega river, a tributary of the Douro river in northern Portugal. The long-term (2016-2100) climate data used is obtained from the EURO-CORDEX simulations, on a daily time scale. Two different combinations of regional and global climate models for scenarios RCP 4.5 and 8.5 (four combinations) were used: ICHEC-EC-EARTH-CLMcom-CCLM4 (CCLM4) and ICHEC-EC-EARTH-DMI-HIRHAM5 (HIRMAM5). Long-term precipitation data was bias-corrected using the multiplicative shift method, and for rainfall-runoff simulation, HEC-HMS model was used. The results showed that 30-years total annual precipitation for future periods (i.e, 2016-2040, 2041-2070 and 2071-2100) was 3.4%-28.1% lower than the historical one. 30-years annual total discharges of all future periods decreased for both models and RCPs (1.2%-30.2% less than the historical ones). Regarding future 30-year annual average capacity factors, there was reduction (1.8%-24.8%) with respect to historical one, except in two future periods for CCLM4 model of RCP 4.5 scenario i.e., 1.2% increased in the period 2016-2040 and 1.5% increased in the period 1971-2100. This suggest that hydropower production is not only dependent on future precipitation trends but also on the hydropower production procedures.