Browsing by Issue Date, starting with "2010-06-17"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Olive Mill wastewater bioremediation by Bjerkandera paranensis: a sustainability and technological evaluationPublication . Duarte, José Cardoso; Pires, Susana; Paixão, Susana M.; Sàágua, M. C.Remediation of olive mill wastewater (OMW) is an important issue associated with olive-oil manufacturing, a widespread activity in the Mediterranean area. This high organic loading effluent contains water, organic acids, high-molecular-weight polyphenols such as tannins, antocyanins and catechins, which are considered to be responsible for its brownish black colour and toxic properties. The composition of OMWs is highly variable with respect to each individual component, depending on the process conditions and on the agricultural specificities. In this work, the ability of a “white-rot” fungus, Bjerkandera paranensis, to use undiluted OMW from a two phase process mill (COD = 11.1 gl-1; Phenol Content = 3.9 gl-1; ColourAbs395nm = 7.8) as a substrate was studied. The biodegradation potential of B. paranensis was assessed monitoring several physico-chemical parameters. A chronic ecotoxicity test (Vibrio fisheri growth inhibition test) was carried out to follow the detoxification ability of this fungus. In work, the results demonstrate that OMW was a suitable medium for cultivation of B. paranensis, with corresponding changes in the physico-chemical properties of the OMW. The results showed that B. paranensis removed 93% phenols and 54% COD from the culture medium within 21 days of treatment. In addition, the IC50s values obtained for the different treated samples showed a significant decrease in the effluent chronic toxicity to V. fischeri when the OMW pH was adjusted to 6.0 prior to the treatment (71.8 %), highlighting the OMW detoxification capacity of B. paranensis
- Ethanol production from enzymatically pretreated wheat strawPublication . Duarte, José Cardoso; Pereira, Joana; Paixão, Susana M.; Baeta-Hall, Lina; Ribeiro, Belina; Sàágua, M. C.Lignocellulosic biomass can be utilized to produce ethanol, a promising alternative energy source for the limited crude oil. Wheat straw is an abundant agricultural residue which can be used as lignocellulosic raw material for bioconversion. There are mainly two processes involved in the bioconversion: hydrolysis of cellulose in the lignocellulosic biomass to produce reducing sugars, and fermentation of the sugars to ethanol. The current study involved the optimization of enzymatic hydrolysis of a wheat straw pretreated by acid hydrolysis, using a mixture of commercial cellulases: celluclast 1.5L + Novozym 188, with further fermentation of the hydrolisate’ sugar content by three ethanologenic strains, namely two yeast of Saccharomyces cerevisiae (strains F and K) and a bacterial strain, Zymomonas mobilis (strain CP4). The fermentation assays, using undiluted hydrolisate with or without nutrient supplements, were monitored by the evaluation of glucose and ethanol yields. In the assays using no supplemented hydrolisate the results obtained for the two yeasts strains F and K, and Zymomonas mobilis were 74%, 79% and 58% of ethanol yield, respectively. However, when the hydrolisate was supplemented the fermentation results showed a better bioconversion process by the Z. mobilis, reaching 98% ethanol yield while the two strains of S. cerevisiae used maintained their behaviour. So, the fermentation results showed the necessity of the addition of nutrients for a good bioconversion process by the Z. mobilis, resulting in better ethanol yield than S. cerevisiae strains (F and K) from WSP hydrolisate.