Browsing by Issue Date, starting with "2025-01"
Now showing 1 - 10 of 10
Results Per Page
Sort Options
- Systematic and Bibliometric Review of Biomethane Production from Biomass-Based Residues: Technologies, Economics and Environmental ImpactPublication . Tiago, Gonçalo A. O.; Rodrigo, Naresh P. B.; Lourinho, Gonçalo; Lopes, Tiago; Gírio, FranciscoABSTRACT: Fossil fuels drive global warming, necessitating renewable alternatives such as biomethane (or renewable natural gas). Biomethane, primarily produced through anaerobic digestion (AD), offers a cleaner energy solution but is limited by the slow AD process. Biomass gasification followed by syngas methanation has emerged as a faster alternative. This review examines advancements in these processes over the last decade (2015–2024), focusing on techno-economic and life cycle assessment (LCA) studies. Techno-economic analyses reveal that biomethane production costs are influenced by several factors, including process complexity, feedstock type and the scale of production. Smaller gasification units tend to exhibit higher capital costs (CAPEX) per MW capacity, while feedstock choice and process efficiency play significant roles in determining overall production costs. LCA studies highlight higher impacts for gasification and methanation due to energy demands and associated emissions. However, integrating renewable hydrogen production through electrolysis, along with innovations such as sorption-enhanced gasification (SEG), can enhance overall system efficiency and reduce environmental impacts. This review critically evaluates the technical and economic challenges, along with the opportunities for optimizing biomethane production, and discusses the potential for these technologies to contribute to sustainable bioenergy solutions in the transition to a low-carbon economy.
- Chemical and Mineralogical Characterization ofWaste from Abandoned Copper and Manganese Mines in the Iberian Pyrite Belt, Portugal: A First Step Towards the Waste-to-Value Recycling ProcessPublication . de Oliveira, Daniel Pipa Soares; Silva, Teresa; Morais, Igor; Fernandes, JoãoABSTRACT: This study examines the chemical and mineralogical composition of waste materials from abandoned copper and manganese mines in the Iberian Pyrite Belt, Portugal, as a first step toward their potential recycling for critical and strategic raw materials (CRM and SRM). Using portable X-ray fluorescence (pXRF) and other analytical techniques, this research highlights the presence of valuable elements, including copper, manganese, and rare earth elements, in concentrations significantly above their crustal abundance. The findings underscore the dual potential of these wastes: as sources of secondary raw materials and for mitigating environmental hazards such as acid mine drainage (AMD). Recovered materials include chalcopyrite, pyrolusite, and rhodochrosite, with critical elements like cobalt, lithium, and tungsten identified. pXRF proved to be a reliable, cost effective tool for rapid field and laboratory analyses, demonstrating high precision and good correlation with standard laboratory methods. The study emphasizes the importance of characterizing historical mining waste to support a circular economy, reduce reliance on foreign material imports, and address environmental challenges. This approach aligns with the European Union’s Critical Raw Materials Act, promoting sustainable resource use and the recovery of strategic resources from historical mining sites.
- Simulation of Surface Segregation in Nanoparticles of Pt-Pd AlloysPublication . Correia, Jose B.; Sá, AnaABSTRACT: Platinum (Pt) and palladium (Pd) are crucial in hydrogen energy technologies, especially in fuel cells, due to their high catalytic activity and chemical stability. Pt-Pd nanoparticles, produced through various methods, enhance catalytic performance based on their size, shape, and composition. These nanocatalysts excel in direct methanol fuel cells (DMFCs) and direct ethanol fuel cells (DEFCs) by promoting alcohol oxidation and reducing CO poisoning. Pt-Pd catalysts are also being explored for their oxygen reduction reaction (ORR) on the cathodic side of fuel cells, showing higher activity and stability than pure platinum. Molecular dynamics (MD) simulations have been conducted to understand the structural and surface energy effects of PdPt nanoparticles, revealing phase separation and chemical ordering, which are critical for optimizing these catalysts. Pd migration to the surface layer in Pt-Pd alloys minimizes the overall potential energy through the formation of Pd surface monolayers and Pt-Pd bonds, leading to a lower surface energy for intermediate compositions compared to that of the pure elements. The potential energy, calculated from MD simulations, increases with a decreasing particle size due to surface creation, indicating higher reactivity for smaller particles. A general contraction of the average distance to the nearest neighbour atoms was determined for the top surface layers within the nanoparticles. This research highlights the significant impact of Pd segregation on the structural and surface energy properties of Pt-Pd nanoparticles. The formation of Pd monolayers and the resulting core-shell structures influence the catalytic activity and stability of these nanoparticles, with smaller particles exhibiting higher surface energy and reactivity. These findings provide insights into the design and optimization of Pt-Pd nanocatalysts for various applications.
- Exploring Marine Biomineralization on the Al-Mg Alloy as a Natural Process for In Situ LDH Growth to Improve Corrosion ResistancePublication . Marques, Maria João; Mercier, Dimitri; Seyeux, Antoine; Zanna, Sandrine; Tenailleau, Christophe; Duployer, Benjamin; Jeannin, Marc; Marcus, Philippe; Basséguy; BASSEGUY, RegineABSTRACT: This study provides a detailed characterization of the AA5083 aluminum alloy, surface, and interface over 6 months of immersion in seawater, employing techniques such as SEM/EDX, GIXRD, mu-Raman and XPS. The purpose was to evaluate the evolution of the biomineralization process that occurs on the Al-Mg alloy. By investigating the specific conditions that favor the in situ growth of layered double hydroxide (LDH) during seawater immersion as a result of biomineralization, this research provides insights into marine biomineralization, highlighting its potential as an innovative and sustainable strategy for corrosion protection.
- Optimizing bacterial nanocellulose production from eucalyptus bark: A circular approach to wastewater management and resource recoveryPublication . Rodrigues, Ana Cristina; Martins, Daniela; Duarte, Maria Salomé; Marques, Susana; Gama, Miguel; Dourado, Fernando; Carvalho, Ricardo; Cavaleiro, AnaABSTRACT: The production cost of bacterial nanocellulose (BNC) is a major limitation to its widespread use. However, this limitation can be addressed by using alternative low-cost substrates and high-yield strains. Agro-industrial wastederived substrates offer a cost-effective and sustainable solution, but their high organic load often requires additional downstream wastewater treatments. Here, we optimized static BNC production using eucalyptus bark hydrolysate (EBH) as a low-cost carbon source and proposed a circular approach for wastewater management. Optimization was performed using response surface methodology - central composite design. The optimized EBH medium yielded a 39.7-fold increase compared to standard medium, with a maximum BNC production of 8.29 f 0.21 g/L. Fermentation wastewater only (WaF) and combined with BNC washing streams (WaW) revealed high levels of organic matter, namely chemical oxygen demand (COD) of 159.0 f 2.0 and 41.1 f 0.3 g/L, and volatile solids (VS) of 99.5 f 0.9 and 26.3 f 0.2 g/L, respectively, requiring treatment before disposal. A sequential anaerobic-aerobic digestion was investigated for wastewater treatment and valorisation. Anaerobic digestion proved to be effective in treating the wastewater: methanization percentages over 87 % were achieved, and methane productions of 486 f 2 and 544 f 30 L/kg VS were obtained from WaF and WaW, respectively. Subsequent aerobic treatment was unsuccessful in further reducing COD levels (approximately 1.5 g/L). Notably, treated wastewater was recycled into the production process up to 45 % without affecting the BNC yield. This study provides valuable insights into the optimization of BNC production from lignocellulosic biomass and the management of wastewater streams, contributing to the development of a more sustainable and economically viable process.
- Biopolymers Derived from Forest Biomass for the Sustainable Textile IndustryPublication . Dias, J. C.; Marques, Susana; Branco, Pedro C.; Rodrigues, Thomas; Torres, Cristiana A.V.; Freitas, Filomena; Evtuguin, Dmitry; Silva, CarlaABSTRACT: In line with environmental awareness movements and social concerns, the textile industry is prioritizing sustainability in its strategic planning, product decisions, and brand initiatives. The use of non-biodegradable materials, obtained from non-renewable sources, contributes heavily to environmental pollution throughout the textile production chain. As sustainable alternatives, considerable efforts are being made to incorporate biodegradable biopolymers derived from residual biomass, with reasonable production costs, to replace or reduce the use of synthetic petrochemical-based polymers. However, the commercial deployment of these biopolymers is dependent on high biomass availability and a cost-effective supply. Residual forest biomass, with lignocellulosic composition and seasonably available at low cost, constitutes an attractive renewable resource that might be used as raw material. Thus, this review aims at carrying out a comprehensive analysis of the existing literature on the use of residual forest biomass as a source of new biomaterials for the textile industry, identifying current gaps or problems. Three specific biopolymers are considered: lignin that is recovered from forest biomass, and the bacterial biopolymers poly(hydroxyalkanoates) (PHAs) and bacterial cellulose (BC), which can be produced from sugar-rich hydrolysates derived from the polysaccharide fractions of forest biomass. Lignin, PHA, and BC can find use in textile applications, for example, to develop fibers or technical textiles, thus replacing the currently used synthetic materials. This approach will considerably contribute to improving the sustainability of the textile industry by reducing the amount of non-biodegradable materials upon disposal of textiles, reducing their environmental impact. Moreover, the integration of residual forest biomass as renewable raw material to produce advanced biomaterials for the textile industry is consistent with the principles of the circular economy and the bioeconomy and offers potential for the development of innovative materials for this industry.
- New Insights on Gordonia alkanivorans Strain 1B Surface-Active Biomolecules: Gordofactin PropertiesPublication . Tavares, João; Paixão, Susana M.; Silva, Tiago; Alves, LuísABSTRACT: Biosurfactants/bioemulsifiers (BSs/BEs) can be defined as surface-active biomolecules produced by microorganisms with a broad range of applications. In recent years, due to their unique properties like biodegradability, specificity, low toxicity, and relative ease of preparation, these biomolecules have attracted wide interest as an eco-friendly alternative for several industrial sectors, escalating global microbial BS/BE market growth. Recently, Gordonia alkanivorans strain 1B, a bacterium with significant biotechnological potential, well known for its biodesulfurizing properties, carotenoid production, and broad catabolic range, was described as a BS/BE producer. This study focuses on the characterization of the properties of the lipoglycopeptide BSs/BEs produced by strain 1B, henceforth referred to as gordofactin, to better understand its potential and future applications. Strain 1B was cultivated in a chemostat using fructose as a carbon source to stimulate gordofactin production, and different purification methods were tested. The most purified sample, designated as extracted gordofactin, after lyophilization, presented a specific emulsifying activity of 9.5 U/mg and a critical micelle concentration of 13.5 mg/L. FT-IR analysis revealed the presence of basic hydroxyl, carboxyl, ether, amine/amide functional groups, and alkyl aliphatic chains, which is consistent with its lipoglycopeptide nature (60% lipids, 19.6% carbohydrates, and 9% proteins). Gordofactin displayed remarkable stability and retained emulsifying activity across a broad range of temperatures (30 degrees C to 80 degrees C) and pH (pH 3-12). Moreover, a significant tolerance of gordofactin emulsifying activity (EA) to a wide range of NaCl concentrations (1 to 100 g/L) was demonstrated. Although with a great loss of EA in the presence of NaCl concentrations above 2.5%, gordofactin could still tolerate up to 100 g/L NaCl, maintaining about 16% of its initial EA for up to 7 days. Furthermore, gordofactin exhibited growth inhibition against both Gram-positive and Gram-negative bacteria, and it demonstrated concentration-dependent free radical scavenging activity for 2,2-diphenyl-1-picrylhydrazyl (IC50 approximate to 1471 mg/L). These promising features emphasize the robustness and potential of gordofactin as an eco-friendly BS/BE alternative to conventional surfactants/emulsifiers for different industrial applications.
- Recovery of Nd3+ and Dy3+ from E-Waste Using Adsorbents from Spent Tyre Rubbers: Batch and Column Dynamic AssaysPublication . Nogueira, Miguel; Matos, Inês; Bernardo, Maria; Pinto, Filomena; Fonseca, Isabel Maria; Lapa, NunoABSTRACT: This paper investigates the use of spent tyre rubber as a precursor for synthesising adsorbents to recover rare earth elements. Through pyrolysis and CO2 activation, tyre rubber is converted into porous carbonaceous materials with surface properties suited for rare earth element adsorption. The study also examines the efficiency of leaching rare earth elements from NdFeB magnets using optimised acid leaching methods, providing insights into recovery processes. The adsorption capacity of the materials was assessed through batch adsorption assays targeting neodymium (Nd3+) and dysprosium (Dy3+) ions. Results highlight the superior performance of activated carbon derived from tyre rubber following CO2 activation, with the best-performing adsorbent achieving maximum uptake capacities of 24.7 mg.g(-1) for Nd3+ and 34.4 mg.g(-1) for Dy3+. Column studies revealed efficient adsorption of Nd3+ and Dy3+ from synthetic and real magnet leachates with a maximum uptake capacity of 1.36 mg.g(-1) for Nd3+ in real leachates and breakthrough times of 25 min. Bi-component assays showed no adverse effects when both ions were present, supporting their potential for simultaneous recovery. Furthermore, the adsorbents effectively recovered rare earth elements from e-waste magnet leachates, demonstrating practical applicability. This research underscores the potential of tyre rubber-derived adsorbents to enhance sustainability in critical raw material supply chains. By repurposing waste tyre rubber, these materials offer a sustainable solution for rare earth recovery, addressing resource scarcity while aligning with circular economy principles by diverting waste from landfills and creating value-added products.
- Analysis of Techno-Economic and Social Impacts of Electric Vehicle Charging Ecosystem in the Distribution Network Integrated with Solar DG and DSTATCOMPublication . Bonela, Ramesh; Ghatak, Sriparna Roy; Swain, Sarat Chandra; Lopes, Fernando; Nandi, Sharmistha; Sannigrahi, Surajit; Acharjee, ParimalABSTRACT: In this work, a comprehensive planning framework for an electric vehicle charging ecosystem (EVCE) is developed, incorporating solar distributed generation (DG) and a distribution static compensator (DSTATCOM), to assess their long-term techno-economic and environmental impacts. The optimal locations and capacities of the EVCE, solar DG, and DSTATCOM are determined using an improved particle swarm optimization algorithm based on the success rate technique. The study aims to maximize the technical, financial, and social benefits while ensuring that all security constraints are met. To assess the financial viability of the proposed model over a 10-year horizon, a detailed economic analysis comprising installation cost, operation, and maintenance cost is conducted. To make the model more realistic, various practical parameters, such as the inflation rate and interest rate, are incorporated during the financial analysis. Additionally, to highlight the societal benefits of the approach, the study quantifies the long-term carbon emissions and the corresponding cost of emissions. The proposed framework is tested on both a 33-bus distribution network and a 108-bus Indian distribution network. Various planning scenarios are explored, with different configurations of the EVCE, solar-based DG, and DSTATCOM, to assist power system planners in selecting the most suitable strategy.
- Thermally modified wood: assessing the impact of weathering on mechanical strength and exposure to subterranean termitesPublication . Godinho, Delfina; Lourenco, Ana; Araújo, Solange; Machado, José Saporiti; Nunes, Lina; Duarte, Marta; Duarte, Sónia; Ferreira, Cristina; Quilhó, Teresa; Cunha Diamantino, Teresa; Gominho, JorgeABSTRACT: The main objective of this study was to evaluate the mechanical properties of three thermal-modified wood species when exposed to weathering in urban and maritime/industrial environments and their durability against subterranean termites. The wood species studied were Maritime pine, ash, and blackwood acacia. All wood samples were exposed to two different environments (urban and maritime/industrial) for 24 months. Then, its physical and mechanical properties were evaluated (modulus of elasticity (MOE), modulus of rupture (MOR), compression strength (CS), and modulus of compression (MOC). Thermally modified woods revealed a lower density, which could explain the loss of MOE and MOR. In compression, no significant changes were verified. The weathered samples showed changes in mechanical properties, mostly verified in MOE and MOR, where some decreases were reported in both locations. Tests were performed to evaluate biodegradation and the resistance of all wood samples to subterranean termites. The grade of attack (approximate to 4) and termite survival rate were similar in all wood species (above 75% and lower than 80%), except for modified acacia (59%), which could indicate that thermal modification increased toxic substances. The cellulose degradation was reflected in FTIR-ATR and Py-GC/MS in natural and thermally modified woods. Py-GC/MS showed a decrease in levoglucosan, while lignin suffered some modifications with slight changes in monomeric composition reflected by the reduction of the S/G ratio. No changes were found between the two environments, and thermal modification did not give extra protection against termites and weathering.