ENERGIA
Permanent URI for this community
Browse
Browsing ENERGIA by Field of Science and Technology (FOS) "Ciências Naturais::Ciências Químicas"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- Benchmarking commercially available value-added fractions with potential for production via microalgae-based biorefineries: is it worth it?Publication . Ferreira, Flávio; Reis, Alberto; Ortigueira, Joana; Lopes, TiagoABSTRACT: The urgent need to mitigate climate change requires finding sustainable and efficient alternatives to fossil fuel-based materials. Biosequestration by microalgae has been suggested as a potential method for climate change mitigation due to its environmentally friendly nature and ability to produce high-value compounds. However, the large-scale application of microalgal biorefineries faces significant challenges, particularly in the harvest and processing stages, which are often costly and energy-intensive. This study aims to benchmark value-added fractions that can be produced via microalgae-based biorefineries against their commercially available counterparts. A systematic review was conducted using the Web of Science™ database to identify current commercial sources of proteins, lipids, polyunsaturated fatty acids and pigments, this study identified key sectors and applications for each fraction, as well as potential market competitors. The results highlight substantial cost differences across production systems, with traditional agricultural sources demonstrating lower CAPEX but greater environmental challenges. Meanwhile, microalgal systems, although associated with higher CAPEX, offer advantages such as reduced land and water dependency, potentially leading to long-term economic resilience and environmental sustainability. By pinpointing research trends, key sectors and optimization opportunities, this work offers valuable insights into the profitability and competitiveness of microalgal systems, providing a benchmark for future optimization efforts. The novelty of this research lies in its comprehensive comparison of microalgae-based and traditional production systems, establishing a clear benchmark for microalgal production and suggesting focus areas for enhancement.
- Enhancing Corrosion Resistance of Al-Mg Alloys through Biomineralization [Resumo]Publication . Marques, Maria João; Fori, Benoit; Mercier, Dimitri; Seyeux, Antoine; Zanna, Sandrine; Marcus, Philippe; BASSEGUY, RegineABSTRACT: In recent decades, new emerging microbiological technologies have been studied, based on the recognition that microorganisms can inhibit corrosion by different mechanisms, the so-called MICI (microbiologically influenced corrosion inhibition), opening up different lines of research. In this context, biomineralization has been attracting the attention of researchers, with an increasing number of studies showing that different types of mineralized layers formed on metal surfaces can reduce the risk of corrosion.
- Evolution of atomically dispersed co-catalysts during solar or UV photocatalysis for efficient and sustained H2 productionPublication . Capelo, Anabela; Fattoruso, Domenico; Valencia-Valero, Laura; Esteves, M. Alexandra; Rangel, Carmen M.; Puga, AlbertoABSTRACT: The evolution of metal/titania photocatalysts during photocatalytic H-2 evolution is herein studied. Samples containing atomically dispersed Pt co-catalysts (single atoms, clusters and sub-nanoparticles) formed after calcination were compared to pre-reduced analogues mostly having metallic nanoparticles (diameters >1 nm) during ethanol photoreforming under either UV-rich irradiation or natural sunlight. Aggregation of ultra-dispersed oxidised platinum entities (Pt delta+) with concomitant reduction into Pt-0 nanoparticles (1-2 nm) was observed after UV irradiation by transmission electron microscopy (TEM), and diffuse reflectance UV-visible (DRUV-vis) and X-ray photoelectron (XPS) spectroscopies. A parallel, albeit slower, evolution trend was evidenced during solar photocatalysis. Conversely, atomically dispersed Cu co-catalyst species did not grow and became in-situ reduced into sub-nanometric Cu-0 under irradiation. Hydrogen production rates were remarkably high during initial stages of UV irradiation, and then declined to a sustained regime (approximate to 50 and 8 mmol g(-1) h(-1) for Pt/TiO2 or Cu/TiO2, respectively, for up to 24 h of irradiation). Steadier solar photoreforming was observed in experiments performed in a compound parabolic collector tubular reactor (approximate to 7.6 and 1.7 mmol g(-1) h(-1) for Pt/TiO2 or Cu/TiO2, respectively). Despite the non-negligible effect of co-catalyst rearrangement on activity rationalised herein, attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy measurements pre- and post-photocatalysis suggest that accumulation of strongly adsorbed degradation intermediates, chiefly acetate, is a major cause for rate decreases. Notwithstanding, this phenomenon did not result in total deactivation, so that sustained hydrogen production upon long-term irradiation was not compromised.
- Recovery of Nd3+ and Dy3+ from E-Waste Using Adsorbents from Spent Tyre Rubbers: Batch and Column Dynamic AssaysPublication . Nogueira, Miguel; Matos, Inês; Bernardo, Maria; Pinto, Filomena; Fonseca, Isabel Maria; Lapa, NunoABSTRACT: This paper investigates the use of spent tyre rubber as a precursor for synthesising adsorbents to recover rare earth elements. Through pyrolysis and CO2 activation, tyre rubber is converted into porous carbonaceous materials with surface properties suited for rare earth element adsorption. The study also examines the efficiency of leaching rare earth elements from NdFeB magnets using optimised acid leaching methods, providing insights into recovery processes. The adsorption capacity of the materials was assessed through batch adsorption assays targeting neodymium (Nd3+) and dysprosium (Dy3+) ions. Results highlight the superior performance of activated carbon derived from tyre rubber following CO2 activation, with the best-performing adsorbent achieving maximum uptake capacities of 24.7 mg.g(-1) for Nd3+ and 34.4 mg.g(-1) for Dy3+. Column studies revealed efficient adsorption of Nd3+ and Dy3+ from synthetic and real magnet leachates with a maximum uptake capacity of 1.36 mg.g(-1) for Nd3+ in real leachates and breakthrough times of 25 min. Bi-component assays showed no adverse effects when both ions were present, supporting their potential for simultaneous recovery. Furthermore, the adsorbents effectively recovered rare earth elements from e-waste magnet leachates, demonstrating practical applicability. This research underscores the potential of tyre rubber-derived adsorbents to enhance sustainability in critical raw material supply chains. By repurposing waste tyre rubber, these materials offer a sustainable solution for rare earth recovery, addressing resource scarcity while aligning with circular economy principles by diverting waste from landfills and creating value-added products.
- Sustainability assessment of collagen extraction from fish skins: A comparative life cycle assessment of conventional and NADES-enhanced processesPublication . Miguel P. Batista; Fernández, Naiara; Gaspar, Frédéric B.; Bronze, MR; Duarte, Ana Rita C.; Ortigueira, Joana; Lopes, TiagoABSTRACT: Collagen from blue shark skins offers a promising solution to utilize fishery by-products, reducing waste and improving resource efficiency. This study develops green chemistry-based extraction processes to minimize reliance on traditional chemical methods and lower environmental impacts, prioritizing sustainability and circularity. Two methods for collagen extraction are compared: a conventional alkaline-acid process and an innovative approach using natural deep eutectic solvents (NADES). Process simulations were conducted using SuperPro Designer software for the annual production of 500 kg of pure extracted collagen, followed by life cycle assessment (LCA) using SimaPro software and the Ecoinvent database, applying the Environmental Footprint (EF) method. For 1 kg of pure marine collagen from fish skin residues, defined as the Functional Unit, the conventional approach yielded a single-score impact of 48.1 mPt, while the NADES method achieved 41.5 mPt. Subsystem analysis reveals that, in the conventional method, the extraction and purification stages account for most of the environmental impact (43 % and 45 %, respectively). In contrast, the NADES method attributed 94 % of its total environmental impact to extraction stage, primarily due to NADES component production (citric acid, xylitol). Uncertainty analysis suggests that conclusions regarding impact reduction should be drawn with caution due to the environmental impact variability of considered inputs. Nevertheless, the mathematical model underscores the potential of the NADES method to reduce the environmental impact and promote more sustainable bioprocessing. This work offers valuable insights into the life cycle assessment of large-scale bioprocesses using green chemistry, providing a tool for optimization and environmental impact screening.