ENERGIA
Permanent URI for this community
Browse
Browsing ENERGIA by Field of Science and Technology (FOS) "Engenharia e Tecnologia::Engenharia do Ambiente"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Optimizing bacterial nanocellulose production from eucalyptus bark: A circular approach to wastewater management and resource recoveryPublication . Rodrigues, Ana Cristina; Martins, Daniela; Duarte, Maria Salomé; Marques, Susana; Gama, Miguel; Dourado, Fernando; Carvalho, Ricardo; Cavaleiro, AnaABSTRACT: The production cost of bacterial nanocellulose (BNC) is a major limitation to its widespread use. However, this limitation can be addressed by using alternative low-cost substrates and high-yield strains. Agro-industrial wastederived substrates offer a cost-effective and sustainable solution, but their high organic load often requires additional downstream wastewater treatments. Here, we optimized static BNC production using eucalyptus bark hydrolysate (EBH) as a low-cost carbon source and proposed a circular approach for wastewater management. Optimization was performed using response surface methodology - central composite design. The optimized EBH medium yielded a 39.7-fold increase compared to standard medium, with a maximum BNC production of 8.29 f 0.21 g/L. Fermentation wastewater only (WaF) and combined with BNC washing streams (WaW) revealed high levels of organic matter, namely chemical oxygen demand (COD) of 159.0 f 2.0 and 41.1 f 0.3 g/L, and volatile solids (VS) of 99.5 f 0.9 and 26.3 f 0.2 g/L, respectively, requiring treatment before disposal. A sequential anaerobic-aerobic digestion was investigated for wastewater treatment and valorisation. Anaerobic digestion proved to be effective in treating the wastewater: methanization percentages over 87 % were achieved, and methane productions of 486 f 2 and 544 f 30 L/kg VS were obtained from WaF and WaW, respectively. Subsequent aerobic treatment was unsuccessful in further reducing COD levels (approximately 1.5 g/L). Notably, treated wastewater was recycled into the production process up to 45 % without affecting the BNC yield. This study provides valuable insights into the optimization of BNC production from lignocellulosic biomass and the management of wastewater streams, contributing to the development of a more sustainable and economically viable process.
- Portugal Offshore Wind, Green Hydrogen, and Sustainable Fuels: Power-to-X PathwaysPublication . Simoes, Sofia; Portillo, Juan C. C.; Simões, Teresa; Estanqueiro, Ana; Catarino, Justina; Costa, Paula; Oliveira, Paula; Ribeiro Pinto, Paulo Jorge; Lopes, Fernando; Lopes, Tiago; Gano, António; Duarte de Castro Fontes, Maria MargaridaABSTRACT: Portugal has a vast coastal area and significant offshore wind resources. The country has set ambitious targets and designated specific areas for offshore wind development. Current national policies are actively encouraging investment in these projects. This report compiles the latest strategies for offshore wind and green hydrogen in Portugal. It introduces the Power-to-X (P2X) concept, explores potential offshore wind-based P2X business models, and outlines the key processes and technologies involved. It also maps potential consumers of green hydrogen, along with the associated supply chains for hydrogen and sustainable fuels. A techno-economic analysis was conducted to identify viable pathways for Portugal. This involved selecting one of the planned offshore wind zones and, based on its location and potential capacity, determining the optimal onshore site and scale for a hydrogen and sustainable fuels hub. The report presents a comparative evaluation of seven scenarios, offering valuable insights for both public and private sector stakeholders.