Integração de Sistemas de Energia - ISE
Permanent URI for this community
Browse
Browsing Integração de Sistemas de Energia - ISE by Subject "Artificial neural networks"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Enhancing wind power forecast accuracy using the weather research and forecasting numerical model-based features and artificial neuronal networksPublication . Couto, António; Estanqueiro, AnaABSTRACT: Forecasting with accuracy the quantity of energy produced by wind power plants is crucial to enabling its optimal integration into power systems and electricity markets. Despite the remarkable improvements in the wind forecasting systems in recent years, large errors can still be observed, especially for longer time horizons. This work focuses on identifying new numerical weather prediction (NWP)-based features aiming to improve the overall quality of wind power forecasts. The methodology also incorporates a sequential forward feature selection algorithm. This algorithm was designed to select iteratively the meteorological features which minimize the wind forecast errors. The methodology was applied separately to seven wind parks in Portugal with different climate characteristics. The proposed approach allowed a reduction between 13% and 37% in the root mean square errors of wind power forecasts, compared with a baseline scenario. While the meteorological features identified for each wind park showed similarities within regions with analogous wind power generation profiles, each wind park required specific meteorological parameters as input data to obtain the best performance. Thus, the results show to be crucial to select the most relevant features of a specific site to maximize the accuracy of a wind power forecast.
- Influence of Increasing Renewable Power Penetration on the Long-Term Iberian Electricity Market PricesPublication . Leal, Pedro; Castro, Rui; Lopes, FernandoABSTRACT: n recent years, there has been a significant increase in investment in renewable energy sources, leading to the decarbonization of the electricity sector. Accordingly, a key concern is the influence of this process on future electricity market prices, which are expected to decrease with the increasing generation of renewable power. This is important for both current and future investors, as it can affect profitability. To address these concerns, a long-term analysis is proposed here to examine the influence of the future electricity mix on Iberian electricity prices in 2030. In this study, we employed artificial intelligence forecasting models that incorporated the main electricity price-driven components of MIBEL, providing accurate predictions for the real operation of the market. These can be extrapolated into the future to predict electricity prices in a scenario with high renewable power penetration. The results, obtained considering a framework featuring an increase in the penetration of renewables into MIBEL of up to 80% in 2030, showed that electricity prices are expected to decrease by around 50% in 2030 when compared to 2019, and there will be a new pattern of electricity prices throughout the year due to the uneven distribution of renewable electricity. The study's findings are relevant for ongoing research on the unique challenges of energy markets with high levels of renewable generation.
- Previsão de curto prazo do consumo de energiaPublication . Duarte, Sérgio M. da Conceição; Estanqueiro, Ana; Couto, A.RESUMO: O combate às alterações climáticas, bem como a redução da dependência energética externa passam pela instalação e exploração em larga escala de novas fontes energética renováveis, endógenas e não poluentes. Contudo, a introdução destas fontes no sistema electroprodutor (SE), com caráter estocástico, confere um nível de incerteza adicional no equilíbrio do mesmo. Neste equilíbrio, é fulcral atuar não só no lado da geração, mas igualmente no lado da procura, em oposição à perspetiva tradicional da gestão dos SEs, em que predomina o paradigma que a oferta deve estar sempre preparada para seguir o consumo, i.e., satisfazer totalmente, a procura, cujo comportamento é, tipicamente, considerado incontrolável e inelástico. Uma das formas mais consensuais para permitir esta mudança, assenta no conceito de gestão do consumo (Demand Side Management), que tem por objetivo flexibilizar o consumo, de modo a que este se adapte a uma produção variável no tempo ou em situações de constrangimento ou de estímulos tarifários. No entanto é necessário ter uma boa previsão do mesmo, de forma a solicitar atempadamente esta resposta do lado do consumo. Com a necessidade de previsões fidedignas como pano de fundo, na presente dissertação é proposta a implementação e comparação de vários modelos, de previsão a curto prazo (24h), utilizando três métodos diferentes, sendo estes posteriormente comparados com um método de referência (baseline). A baseline utilizada consiste numa regressão linear simples, utilizando o consumo de energia elétrica verificado no instante t-24horas como variável independente. Os três métodos utilizados foram a Regressão Linear Multivariada (MLR), k-vizinhos mais próximos (KNN) e uma Rede Neuronal Artificial (ANN). Recorrendo a uma técnica estatística de agrupamento de dados (k-medoids), é ainda feita uma identificação dos perfis diários de consumo presentes na série temporal em análise, a identificar padrões diários, semanais e sazonais. Estes métodos foram aplicados à série de consumo habitacional para Portugal, BTN C, disponibilizada publicamente pela REN, utilizando os valores registados de 2014 a 2018 (inclusive). No problema em estudo a Rede Neuronal Artificial foi identificada como o melhor método. Foram obtidos MAPE de 5,6%, 4,3% e 4,2% e RMSE de 13,4MW, 11,7MW e 10,7MW para a MLR, KNN e ANN, respetivamente. Comparativamente, a baseline conseguiu um MAPE de 7,8% e um RMSE de 19,3 MW. Num nível mais granular, foram analisados em detalhe os desvios na previsão e identificadas as horas de maior consumo como as mais problemáticas de prever. O mesmo também se verificou ao nível dos meses do ano, onde os meses mais frios demonstraram ser os mais problemáticos, não só pelo o nível de intensidade do valor mas devido à variabilidade que existe nestes meses. Ao nível diário, os dias de transição de regime (sábado e segunda-feira) e o domingo apresentaram erros consideravelmente mais elevados relativamente aos restantes dias da semana. Com este trabalho, as conclusões retiradas permitem demonstrar a importância e a vantagem da aplicação das metodologias de i) agregação para compreender e caracterizar os diferentes perfis de consumo de energia elétrica e ii) previsão a curto prazo do consumo de energia elétrica com recurso ao método de aprendizagem automática, nomeadamente, Redes Neuronais Artificiais.