ISE - Relatórios técnicos
URI permanente para esta coleção:
Navegar
Percorrer ISE - Relatórios técnicos por assunto "Computational Fluid Dynamics"
A mostrar 1 - 2 de 2
Resultados por página
Opções de ordenação
- Aplicações a Engenharia: Algumas aplicações do Software ANSYS FluentPublication . Lima, MargaridaRESUMO: Com uma larga experiência, o Computer Fluid Dynamic (CFD) ANSYS é referência mundial em simulação computacional. As suas ferramentas são usadas por líderes de mercado para transformar a maneira de projetar, permitindo aos engenheiros explorar e prever como os produtos vão funcionar no mundo real. O objetivo é, reduzir custos com protótipos e tempo de produção, melhorar a qualidade, diminuir riscos, acelerando a inovação em todos os setores para ultrapassar os limites previstos nas diferentes áreas do saber. A plataforma de trabalho do ANSYS é atrativa e intuitiva. Nela inicia-se o modelo ou os componentes dos modelos a construir em geral em 2D ou 3D. Tem compatibilidade como CAD e outros programas. No caso da termodinâmica, fluidos sem ou com componentes (thermoclines ) utiliza-se o pacote de Fluids. Com ele resolvem-se as equações de convecção, turbulência e mesmo da radiação nas fronteiras que definem o projeto em causa. Também se analisam as componentes que se podem otimizar em função do estudo pretendido. Os meios porosos estão, pois, largamente incluídos.
- Computation of Hydrodynamic Coefficients for Submerged Spheres: A Comprehensive AnalysisPublication . Justino, Paulo AlexandreABSTRACT: Hydrodynamic coefficients are essential parameters in fluid mechanics that serve to quantify the complex interaction between a submerged body and the surrounding fluid . Specifically in the context of submerged spheres, these coefficients provide a measure of the forces and moments exerted by the fluid on the sphere, or conversely, the resistance the sphere encounters as it moves through the fluid . Understanding and accurately determining these coefficients is paramount for a wide range of applications, including the design and control of underwater vehicles, the analysis of offshore structures, and the prediction of the behavior of marine organisms. The accurate prediction of wave loads on submerged structures also relies heavily on the evaluation of these coefficients. The significance of hydrodynamic coefficients lies in their ability to simplify the complex physics of fluid-structure interaction into manageable parameters. For instance, the added mass coefficient reflects the inertia of the fluid that is accelerated along with the moving sphere, effectively increasing the sphere's apparent mass. This phenomenon is critical in dynamic analyses, as the inertial forces are directly influenced by this added mass. Similarly, the drag coefficient quantifies the resistance force that opposes the sphere's motion, a force primarily attributed to viscous effects and the pressure distribution around the body. In certain flow regimes, particularly involving non-uniform flow fields such as those induced by waves or in the presence of rotation, a lift coefficient may also become relevant, representing a force acting perpendicular to the direction of motion. The accurate determination of these coefficients, which can be linear or nonlinear depending on the complexity of the fluid-structure interaction, is a crucial step in the design and analysis of any system involving submerged spheres. The interaction between a submerged sphere and the surrounding fluid exemplifies a fundamental fluid-structure interaction problem. When a solid object like a sphere is placed in the path of a fluid, the fluid exerts pressure and viscous forces on the sphere's surface, potentially leading to its motion or deformation. Conversely, the presence and motion of the sphere alter the flow field of the fluid. Hydrodynamic coefficients serve as the critical link in understanding this bidirectional influence, allowing engineers and researchers to predict the dynamic response of the sphere to fluid forces and the impact of the sphere's motion on the fluid environment. For example, in the context of underwater explosions, the structural response of a submerged body significantly affects the dynamics of the explosion bubble, highlighting the intricate nature of fluid-structure interaction where hydrodynamic coefficients play a vital role.
